Merge pull request !6350 from pengyongrong/op_format_toNC4HW4tags/v1.0.0
| @@ -0,0 +1,46 @@ | |||
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| __constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST; | |||
| __kernel void Cast_Fp32ToFp16_NHWC4(__read_only image2d_t input0, __write_only image2d_t output, int4 output_shape) { | |||
| int X = get_global_id(0); // N*H | |||
| int Y = get_global_id(1); // W | |||
| int Z = get_global_id(2); // c/4 | |||
| if (X >= output_shape.x * output_shape.y || Y >= output_shape.z || Z >= output_shape.w) { | |||
| return; | |||
| } | |||
| half4 result = convert_half4(READ_IMAGE(input0, smp_none, (int2)((Y)*output_shape.w + Z, (X)))); | |||
| write_imageh(output, (int2)((Y)*output_shape.w + Z, (X)), result); | |||
| } | |||
| __kernel void Cast_Fp32ToFp16_NC4HW4(__read_only image2d_t input0, __write_only image2d_t output, int4 output_shape) { | |||
| int X = get_global_id(0); // N*H | |||
| int Y = get_global_id(1); // W | |||
| int Z = get_global_id(2); // c/4 | |||
| if (X >= output_shape.x * output_shape.y || Y >= output_shape.z || Z >= output_shape.w) { | |||
| return; | |||
| } | |||
| half4 result = convert_half4(READ_IMAGE(input0, smp_none, (int2)((Y), (Z * output_shape.y + X)))); | |||
| write_imageh(output, (int2)((Y), (Z * output_shape.y + X)), result); | |||
| } | |||
| __kernel void Cast_Fp16ToFp32_NHWC4(__read_only image2d_t input0, __write_only image2d_t output, int4 output_shape) { | |||
| int X = get_global_id(0); // N*H | |||
| int Y = get_global_id(1); // W | |||
| int Z = get_global_id(2); // c/4 | |||
| if (X >= output_shape.x * output_shape.y || Y >= output_shape.z || Z >= output_shape.w) { | |||
| return; | |||
| } | |||
| float4 result = convert_float4(READ_IMAGE(input0, smp_none, (int2)((Y)*output_shape.w + Z, (X)))); | |||
| WRITE_IMAGE(output, (int2)((Y)*output_shape.w + Z, (X)), result); | |||
| } | |||
| __kernel void Cast_Fp16ToFp32_NC4HW4(__read_only image2d_t input0, __write_only image2d_t output, int4 output_shape) { | |||
| int X = get_global_id(0); // N*H | |||
| int Y = get_global_id(1); // W | |||
| int Z = get_global_id(2); // c/4 | |||
| if (X >= output_shape.x * output_shape.y || Y >= output_shape.z || Z >= output_shape.w) { | |||
| return; | |||
| } | |||
| float4 result = convert_float4(READ_IMAGE(input0, smp_none, (int2)((Y), (Z * output_shape.y + X)))); | |||
| WRITE_IMAGE(output, (int2)((Y), (Z * output_shape.y + X)), result); | |||
| } | |||
| @@ -112,12 +112,12 @@ int BatchNormOpenCLKernel::Run() { | |||
| std::vector<size_t> global = {OH, OW, OC}; | |||
| BatchNormGetWorkGroup(global, &local, max_global[0]); | |||
| int arg_cn = 0; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->MutableData()); // input tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->MutableData()); // scale | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[2]->MutableData()); // offest | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[3]->MutableData()); // mean | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[4]->MutableData()); // variance | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->MutableData()); // out tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c()); // input tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->data_c()); // scale | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[2]->data_c()); // offest | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[3]->data_c()); // mean | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[4]->data_c()); // variance | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c()); // out tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, param->epsilon_); | |||
| ocl_runtime->RunKernel(kernel_, global, local, nullptr); | |||
| @@ -0,0 +1,152 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <cstring> | |||
| #include <algorithm> | |||
| #include <set> | |||
| #include<string> | |||
| #include "src/kernel_registry.h" | |||
| #include "src/runtime/opencl/opencl_runtime.h" | |||
| #include "src/runtime/kernel/opencl/kernel/cast.h" | |||
| #include "src/runtime/kernel/opencl/utils.h" | |||
| #include "src/runtime/kernel/opencl/cl/cast.cl.inc" | |||
| using mindspore::kernel::KERNEL_ARCH::kGPU; | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::schema::PrimitiveType_Cast; | |||
| namespace mindspore::kernel { | |||
| int CastOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) { | |||
| size_t CO4 = UP_DIV(out_tensors_[0]->Channel(), C4NUM); | |||
| size_t im_dst_x, im_dst_y; | |||
| if (in_tensors_[0]->GetFormat() == schema::Format::Format_NHWC4) { | |||
| im_dst_x = out_tensors_[0]->Width() * CO4; | |||
| im_dst_y = out_tensors_[0]->Height(); | |||
| } else { | |||
| im_dst_y = out_tensors_[0]->Batch() * out_tensors_[0]->Height() * CO4; | |||
| im_dst_x = out_tensors_[0]->Width(); | |||
| } | |||
| size_t img_dtype = CL_FLOAT; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| auto enable_fp16_ = ocl_runtime->GetFp16Enable(); | |||
| if (enable_fp16_) { | |||
| img_dtype = CL_HALF_FLOAT; | |||
| } | |||
| img_size->clear(); | |||
| std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype}; | |||
| *img_size = vec; | |||
| return RET_OK; | |||
| } | |||
| void CastOpenCLKernel::GetKernelName(std::string *kernel_name, CastParameter *param) { | |||
| if (param->src_type_ == kNumberTypeFloat32 && param->dst_type_ == kNumberTypeFloat16) { | |||
| kernel_name[0] += "_Fp32ToFp16"; | |||
| } else if (param->src_type_ == kNumberTypeFloat16 && param->dst_type_ == kNumberTypeFloat32) { | |||
| kernel_name[0] += "_Fp16ToFp32"; | |||
| } else { | |||
| MS_LOG(ERROR) << "unsupported convert format from : " << param->src_type_ << "to " << param->dst_type_; | |||
| } | |||
| } | |||
| int CastOpenCLKernel::Init() { | |||
| auto param = reinterpret_cast<CastParameter *>(this->op_parameter_); | |||
| auto in_format = op_format_; | |||
| if (in_format != schema::Format_NHWC4 && in_format != schema::Format_NC4HW4) { | |||
| MS_LOG(ERROR) << "input format(" << in_format << ") " | |||
| << "format not support!"; | |||
| return RET_ERROR; | |||
| } | |||
| in_ori_format_ = in_tensors_[0]->GetFormat(); | |||
| in_tensors_[0]->SetFormat(op_format_); | |||
| out_ori_format_ = out_tensors_[0]->GetFormat(); | |||
| out_tensors_[0]->SetFormat(op_format_); | |||
| std::string kernel_name = "Cast"; | |||
| GetKernelName(&kernel_name, param); | |||
| if (in_format == schema::Format_NC4HW4) { | |||
| kernel_name += "_NC4HW4"; | |||
| } else if (in_format == schema::Format_NHWC4) { | |||
| kernel_name += "_NHWC4"; | |||
| } | |||
| std::set<std::string> build_options; | |||
| std::string source = cast_source; | |||
| std::string program_name = "cast"; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->LoadSource(program_name, source); | |||
| ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options); | |||
| return RET_OK; | |||
| } | |||
| int CastOpenCLKernel::ReSize() { return RET_OK; } | |||
| void CastGetWorkGroup(const std::vector<size_t> &global, std::vector<size_t> *local, int max_size) { | |||
| const int max_divider = 8; | |||
| const int max_x = 4, max_y = 8; | |||
| int x = std::min(GetMaxDivisorStrategy1(global[0], max_divider), max_x); | |||
| int yz = max_size / x; | |||
| int y = std::min(std::min(GetMaxDivisorStrategy1(global[1], max_divider), yz), max_y); | |||
| int z = std::min(yz / y, static_cast<int>(UP_DIV(global[2], 2))); | |||
| local->clear(); | |||
| local->push_back(x); | |||
| local->push_back(y); | |||
| local->push_back(z); | |||
| } | |||
| int CastOpenCLKernel::Run() { | |||
| MS_LOG(DEBUG) << this->name() << " Running! "; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| auto input_shape = in_tensors_[0]->shape(); | |||
| cl_int4 input_shape_ = {input_shape[0], input_shape[1], input_shape[2], UP_DIV(input_shape[3], C4NUM)}; | |||
| uint32_t OH = input_shape[1]; | |||
| uint32_t OW = input_shape[2]; | |||
| uint32_t OC = UP_DIV(input_shape[3], C4NUM); | |||
| const std::vector<size_t> &max_global = ocl_runtime->GetWorkItemSize(); | |||
| std::vector<size_t> local = {1, 1, 1}; // init local | |||
| std::vector<size_t> global = {OH, OW, OC}; | |||
| CastGetWorkGroup(global, &local, max_global[0]); | |||
| int arg_cn = 0; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c()); // input tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c()); // out tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape_); | |||
| ocl_runtime->RunKernel(kernel_, global, local, nullptr); | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *OpenCLCastKernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter, | |||
| const lite::Context *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| auto *kernel = new (std::nothrow) CastOpenCLKernel(opParameter, inputs, outputs); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << " new CastOpenCLKernel failed "; | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << " Init kernel failed, name: Cast "; | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Cast, OpenCLCastKernelCreator); | |||
| REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Cast, OpenCLCastKernelCreator); | |||
| } // namespace mindspore::kernel | |||
| @@ -0,0 +1,52 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_CAST_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_CAST_H_ | |||
| #include <vector> | |||
| #include<string> | |||
| #include "ir/anf.h" | |||
| #include "src/runtime/kernel/opencl/opencl_kernel.h" | |||
| #include "src/runtime/opencl/opencl_runtime.h" | |||
| #include "nnacl/fp32/cast.h" | |||
| namespace mindspore::kernel { | |||
| class CastOpenCLKernel : public OpenCLKernel { | |||
| public: | |||
| explicit CastOpenCLKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs) | |||
| : OpenCLKernel(parameter, inputs, outputs) {} | |||
| ~CastOpenCLKernel() override{}; | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| void GetKernelName(std::string *kernel_name, CastParameter *param); | |||
| int GetImageSize(size_t idx, std::vector<size_t> *img_size) override; | |||
| private: | |||
| cl::Kernel kernel_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif | |||
| @@ -55,11 +55,11 @@ int ConcatOpenCLKernel::RunAxis0() { | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| auto allocator_ = ocl_runtime->GetAllocator(); | |||
| std::vector<size_t> img_size; | |||
| auto dst_data = out_tensors_[0]->MutableData(); | |||
| auto dst_data = out_tensors_[0]->data_c(); | |||
| auto dst_origin = cl::array<cl::size_type, 3U>{0, 0, 0}; | |||
| cl::Image2D *out_image = reinterpret_cast<cl::Image2D *>(allocator_->GetImage(dst_data)); | |||
| for (int i = 0; i < in_tensors_.size(); i++) { | |||
| auto src_data = in_tensors_[i]->MutableData(); | |||
| auto src_data = in_tensors_[i]->data_c(); | |||
| allocator_->GetImageSize(src_data, &img_size); | |||
| auto src_origin = cl::array<cl::size_type, 3U>{0, 0, 0}; | |||
| auto region = cl::array<cl::size_type, 3U>{img_size[0], img_size[1], 1}; | |||
| @@ -176,9 +176,9 @@ int ConcatOpenCLKernel::Run() { | |||
| int arg_cn = 0; | |||
| if (in_tensors_.size() == 2) { | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape1_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape2_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, output_shape_); | |||
| @@ -187,10 +187,10 @@ int ConcatOpenCLKernel::Run() { | |||
| auto input3_shape = in_tensors_[2]->shape(); | |||
| cl_int4 input_shape3_ = {input3_shape[0], input3_shape[1], input3_shape[2], UP_DIV(input3_shape[3], C4NUM)}; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[2]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[2]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape1_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape2_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape3_); | |||
| @@ -202,11 +202,11 @@ int ConcatOpenCLKernel::Run() { | |||
| cl_int4 input_shape3_ = {input3_shape[0], input3_shape[1], input3_shape[2], UP_DIV(input3_shape[3], C4NUM)}; | |||
| cl_int4 input_shape4_ = {input4_shape[0], input4_shape[1], input4_shape[2], UP_DIV(input4_shape[3], C4NUM)}; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[2]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[3]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->MutableData()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[1]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[2]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[3]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape1_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape2_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape3_); | |||
| @@ -110,8 +110,8 @@ int SliceOpenCLKernel::Run() { | |||
| std::vector<size_t> global = {1, OH, OW}; | |||
| SlcieGetWorkGroup(global, &local, max_global[0]); | |||
| int arg_cn = 0; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->MutableData()); // input tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->MutableData()); // out tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c()); // input tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c()); // out tensor | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, input_shape_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, size_); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_cn++, begin_); | |||
| @@ -130,15 +130,15 @@ TEST_F(TestBatchnormOpenCLfp16, Batchnormfp16input_dim4) { | |||
| } | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " init tensors "; | |||
| memcpy(inputs[0]->MutableData(), input_data, input_size); | |||
| memcpy(inputs[1]->MutableData(), scale_data, scale_size); | |||
| memcpy(inputs[2]->MutableData(), offset_data, offset_size); | |||
| memcpy(inputs[3]->MutableData(), mean_data, mean_size); | |||
| memcpy(inputs[4]->MutableData(), var_data, var_size); | |||
| memcpy(inputs[0]->data_c(), input_data, input_size); | |||
| memcpy(inputs[1]->data_c(), scale_data, scale_size); | |||
| memcpy(inputs[2]->data_c(), offset_data, offset_size); | |||
| memcpy(inputs[3]->data_c(), mean_data, mean_size); | |||
| memcpy(inputs[4]->data_c(), var_data, var_size); | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->MutableData()); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->data_c()); | |||
| CompareOutputData(output_data_gpu, correct_data, output_tensor->ElementsNum(), 0.01); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| @@ -247,15 +247,15 @@ TEST_F(TestBatchnormOpenCLfp32, Batchnormfp32input_dim4) { | |||
| } | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " init tensors "; | |||
| memcpy(inputs[0]->MutableData(), input_data, input_size); | |||
| memcpy(inputs[1]->MutableData(), scale_data, scale_size); | |||
| memcpy(inputs[2]->MutableData(), offset_data, offset_size); | |||
| memcpy(inputs[3]->MutableData(), mean_data, mean_size); | |||
| memcpy(inputs[4]->MutableData(), var_data, var_size); | |||
| memcpy(inputs[0]->data_c(), input_data, input_size); | |||
| memcpy(inputs[1]->data_c(), scale_data, scale_size); | |||
| memcpy(inputs[2]->data_c(), offset_data, offset_size); | |||
| memcpy(inputs[3]->data_c(), mean_data, mean_size); | |||
| memcpy(inputs[4]->data_c(), var_data, var_size); | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->MutableData()); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->data_c()); | |||
| CompareOutputData(output_data_gpu, correct_data, output_tensor->ElementsNum(), 0.0001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| @@ -0,0 +1,212 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include "utils/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/src/runtime/opencl/opencl_runtime.h" | |||
| #include "mindspore/lite/src/common/file_utils.h" | |||
| #include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h" | |||
| #include "mindspore/lite/src/runtime/kernel/opencl/kernel/cast.h" | |||
| namespace mindspore { | |||
| class TestCastSelfOpenCL : public mindspore::CommonTest { | |||
| public: | |||
| TestCastSelfOpenCL() {} | |||
| }; | |||
| template <typename T> | |||
| void CompareOutputData1(T *output_data, T *correct_data, int size, float err_bound) { | |||
| for (size_t i = 0; i < size; i++) { | |||
| T abs = fabs(output_data[i] - correct_data[i]); | |||
| ASSERT_LE(abs, err_bound); | |||
| } | |||
| } | |||
| TEST_F(TestCastSelfOpenCL, Castfp32tofp16) { | |||
| MS_LOG(INFO) << " begin test "; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->Init(); | |||
| auto allocator = ocl_runtime->GetAllocator(); | |||
| // get the input from .bin | |||
| size_t input1_size, output_size; | |||
| std::string input1Ppath = "./test_data/in_castfp32.bin"; | |||
| std::string correctOutputPath = "./test_data/out_castfp16.bin"; | |||
| MS_LOG(INFO) << " initialize param "; | |||
| auto param = new (std::nothrow) CastParameter(); | |||
| if (param == nullptr) { | |||
| MS_LOG(INFO) << " new CastParameter failed "; | |||
| return; | |||
| } | |||
| param->src_type_ = kNumberTypeFloat32; | |||
| param->dst_type_ = kNumberTypeFloat16; | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input1Ppath.c_str(), &input1_size)); | |||
| auto correctOutput = | |||
| reinterpret_cast<float16_t *>(mindspore::lite::ReadFile(correctOutputPath.c_str(), &output_size)); | |||
| MS_LOG(INFO) << " init tensors "; | |||
| std::vector<int> shape = {1, 23, 39, 47}; | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(kNumberTypeFloat32, shape, schema::Format_NHWC, tensor_type); | |||
| auto *output_tensor = new (std::nothrow) lite::Tensor(kNumberTypeFloat16, shape, schema::Format_NHWC, tensor_type); | |||
| if (input_tensor == nullptr || output_tensor == nullptr) { | |||
| MS_LOG(INFO) << " new input_tensor or output_tensor failed "; | |||
| return; | |||
| } | |||
| std::vector<lite::Tensor *> inputs{input_tensor}; | |||
| std::vector<lite::Tensor *> outputs{output_tensor}; | |||
| auto *cast_kernel = | |||
| new (std::nothrow) kernel::CastOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); | |||
| if (cast_kernel == nullptr) { | |||
| MS_LOG(INFO) << " new kernel::CastOpenCLKernel failed "; | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete param; | |||
| return; | |||
| } | |||
| cast_kernel->SetFormatType(schema::Format_NC4HW4); | |||
| cast_kernel->Init(); | |||
| // to do allocate memory for inputs and outputs | |||
| for (auto &input_tensor : inputs) { | |||
| input_tensor->MallocData(allocator); | |||
| } | |||
| MS_LOG(INFO) << " initialize sub_graph "; | |||
| std::vector<kernel::LiteKernel *> kernels{cast_kernel}; | |||
| auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); | |||
| if (sub_graph == nullptr) { | |||
| MS_LOG(INFO) << " new kernel::SubGraphOpenCLKernel failed "; | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete param; | |||
| delete cast_kernel; | |||
| return; | |||
| } | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " initialize input data "; | |||
| memcpy(inputs[0]->data_c(), input_data, input1_size); | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->data_c()); | |||
| CompareOutputData1(output_data_gpu, correctOutput, output_tensor->ElementsNum(), 0.000001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete param; | |||
| delete cast_kernel; | |||
| delete sub_graph; | |||
| } | |||
| TEST_F(TestCastSelfOpenCL, Castfp16tofp32) { | |||
| MS_LOG(INFO) << " begin test "; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->Init(); | |||
| auto allocator = ocl_runtime->GetAllocator(); | |||
| // get the input from .bin | |||
| size_t input1_size, output_size; | |||
| std::string input1Ppath = "./test_data/in_castfp16.bin"; | |||
| std::string correctOutputPath = "./test_data/out_castfp32.bin"; | |||
| MS_LOG(INFO) << " initialize param "; | |||
| auto param = new (std::nothrow) CastParameter(); | |||
| if (param == nullptr) { | |||
| MS_LOG(INFO) << " new CastParameter failed "; | |||
| return; | |||
| } | |||
| param->src_type_ = kNumberTypeFloat16; | |||
| param->dst_type_ = kNumberTypeFloat32; | |||
| auto input_data = reinterpret_cast<float16_t *>(mindspore::lite::ReadFile(input1Ppath.c_str(), &input1_size)); | |||
| auto correctOutput = reinterpret_cast<float *>(mindspore::lite::ReadFile(correctOutputPath.c_str(), &output_size)); | |||
| MS_LOG(INFO) << " init tensors "; | |||
| std::vector<int> shape = {1, 23, 39, 47}; | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(kNumberTypeFloat16, shape, schema::Format_NHWC, tensor_type); | |||
| auto *output_tensor = new (std::nothrow) lite::Tensor(kNumberTypeFloat32, shape, schema::Format_NHWC, tensor_type); | |||
| if (input_tensor == nullptr || output_tensor == nullptr) { | |||
| MS_LOG(INFO) << " new input_tensor or output_tensor failed "; | |||
| return; | |||
| } | |||
| std::vector<lite::Tensor *> inputs{input_tensor}; | |||
| std::vector<lite::Tensor *> outputs{output_tensor}; | |||
| auto *cast_kernel = | |||
| new (std::nothrow) kernel::CastOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); | |||
| if (cast_kernel == nullptr) { | |||
| MS_LOG(INFO) << " new kernel::CastOpenCLKernel failed "; | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete param; | |||
| return; | |||
| } | |||
| cast_kernel->SetFormatType(schema::Format_NC4HW4); | |||
| cast_kernel->Init(); | |||
| // to do allocate memory for inputs and outputs | |||
| for (auto &input_tensor : inputs) { | |||
| input_tensor->MallocData(allocator); | |||
| } | |||
| MS_LOG(INFO) << " initialize sub_graph "; | |||
| std::vector<kernel::LiteKernel *> kernels{cast_kernel}; | |||
| auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); | |||
| if (sub_graph == nullptr) { | |||
| MS_LOG(INFO) << " new kernel::SubGraphOpenCLKernel failed "; | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete param; | |||
| delete cast_kernel; | |||
| return; | |||
| } | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " initialize input data "; | |||
| memcpy(inputs[0]->data_c(), input_data, input1_size); | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->data_c()); | |||
| CompareOutputData1(output_data_gpu, correctOutput, output_tensor->ElementsNum(), 0.000001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete param; | |||
| delete cast_kernel; | |||
| delete sub_graph; | |||
| } | |||
| } // namespace mindspore | |||
| @@ -138,24 +138,24 @@ TEST_F(TestConcatOpenCLfp16, ConcatFp16_2input_dim4_axis3) { | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " initialize input data "; | |||
| if (inputs.size() == 2) { | |||
| memcpy(inputs[0]->MutableData(), input_data1, input1_size); | |||
| memcpy(inputs[1]->MutableData(), input_data2, input2_size); | |||
| memcpy(inputs[0]->data_c(), input_data1, input1_size); | |||
| memcpy(inputs[1]->data_c(), input_data2, input2_size); | |||
| } else if (inputs.size() == 3) { | |||
| memcpy(inputs[0]->MutableData(), input_data1, input1_size); | |||
| memcpy(inputs[1]->MutableData(), input_data2, input2_size); | |||
| memcpy(inputs[2]->MutableData(), input_data3, input3_size); | |||
| memcpy(inputs[0]->data_c(), input_data1, input1_size); | |||
| memcpy(inputs[1]->data_c(), input_data2, input2_size); | |||
| memcpy(inputs[2]->data_c(), input_data3, input3_size); | |||
| } else if (inputs.size() == 4) { | |||
| memcpy(inputs[0]->MutableData(), input_data1, input1_size); | |||
| memcpy(inputs[1]->MutableData(), input_data2, input2_size); | |||
| memcpy(inputs[2]->MutableData(), input_data3, input3_size); | |||
| memcpy(inputs[3]->MutableData(), input_data4, input4_size); | |||
| memcpy(inputs[0]->data_c(), input_data1, input1_size); | |||
| memcpy(inputs[1]->data_c(), input_data2, input2_size); | |||
| memcpy(inputs[2]->data_c(), input_data3, input3_size); | |||
| memcpy(inputs[3]->data_c(), input_data4, input4_size); | |||
| } else { | |||
| MS_LOG(ERROR) << " input size must be 2 or 3 or 4"; | |||
| } | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->MutableData()); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->data_c()); | |||
| CompareOutputData1(output_data_gpu, correctOutput, output_tensor->ElementsNum(), 0.000001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| @@ -263,19 +263,19 @@ TEST_F(TestConcatOpenCLfp32, ConcatFp32_2input_dim4_axis3) { | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " initialize input data "; | |||
| if (inputs.size() == 2) { | |||
| memcpy(inputs[0]->MutableData(), input_data1, input1_size); | |||
| memcpy(inputs[1]->MutableData(), input_data2, input2_size); | |||
| memcpy(inputs[0]->data_c(), input_data1, input1_size); | |||
| memcpy(inputs[1]->data_c(), input_data2, input2_size); | |||
| } else if (inputs.size() == 3) { | |||
| memcpy(inputs[0]->MutableData(), input_data1, input1_size); | |||
| memcpy(inputs[1]->MutableData(), input_data2, input2_size); | |||
| memcpy(inputs[2]->MutableData(), input_data3, input3_size); | |||
| memcpy(inputs[0]->data_c(), input_data1, input1_size); | |||
| memcpy(inputs[1]->data_c(), input_data2, input2_size); | |||
| memcpy(inputs[2]->data_c(), input_data3, input3_size); | |||
| } else { | |||
| MS_LOG(ERROR) << " input size must be 2 or 3 "; | |||
| } | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->MutableData()); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->data_c()); | |||
| CompareOutputData1(output_data_gpu, correctOutput, output_tensor->ElementsNum(), 0.00001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| @@ -130,12 +130,12 @@ TEST_F(TestSliceOpenCLfp32, Slicefp32input_dim4) { | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " init tensors "; | |||
| memcpy(inputs[0]->MutableData(), input_data, input_size); | |||
| memcpy(inputs[0]->data_c(), input_data, input_size); | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->MutableData()); | |||
| auto *output_data_gpu = reinterpret_cast<float *>(output_tensor->data_c()); | |||
| CompareOutputData1(output_data_gpu, correct_data, output_tensor->ElementsNum(), 0.0001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| @@ -238,12 +238,12 @@ TEST_F(TestSliceOpenCLfp16, Slicefp16input_dim4) { | |||
| sub_graph->Init(); | |||
| MS_LOG(INFO) << " init tensors "; | |||
| memcpy(inputs[0]->MutableData(), input_data, input_size); | |||
| memcpy(inputs[0]->data_c(), input_data, input_size); | |||
| std::cout << "==================output data================" << std::endl; | |||
| sub_graph->Run(); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->MutableData()); | |||
| auto *output_data_gpu = reinterpret_cast<float16_t *>(output_tensor->data_c()); | |||
| CompareOutputData1(output_data_gpu, correct_data, output_tensor->ElementsNum(), 0.0001); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||