|
|
@@ -0,0 +1,176 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
# ============================================================================ |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
|
|
import mindspore.nn as nn |
|
|
|
|
|
from mindspore import Tensor |
|
|
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
|
|
def __init__(self, x, axis): |
|
|
|
|
|
super(Net, self).__init__() |
|
|
|
|
|
self.pack = P.Pack(axis) |
|
|
|
|
|
self.x = x |
|
|
|
|
|
|
|
|
|
|
|
def construct(self): |
|
|
|
|
|
return self.pack(self.x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_bool(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4)>0 |
|
|
|
|
|
y = np.random.randn(3, 5, 4)>0 |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_int8(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.int8) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.int8) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_uint8(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.uint8) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.uint8) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_int16(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.int16) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.int16) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_uint16(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.uint16) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.uint16) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_int32(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.int32) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.int32) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_uint32(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.uint32) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.uint32) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_int64(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.int64) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.int64) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_uint64(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.uint64) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.uint64) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_float16(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.float16) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.float16) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_float32(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.float32) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.float32) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_float64(): |
|
|
|
|
|
x = np.random.randn(3, 5, 4).astype(np.float64) |
|
|
|
|
|
y = np.random.randn(3, 5, 4).astype(np.float64) |
|
|
|
|
|
axis = -1 |
|
|
|
|
|
net = Net((Tensor(x), Tensor(y)), axis) |
|
|
|
|
|
output = net() |
|
|
|
|
|
print(x) |
|
|
|
|
|
print(y) |
|
|
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
assert np.array_equal(output.asnumpy(), np.stack([x,y], axis)) |