Browse Source

Support weight quantization of ToD models and quantization of optimizer weights

pull/15349/head
Emir Haleva 4 years ago
parent
commit
7341fe8c66
12 changed files with 195 additions and 24 deletions
  1. +0
    -3
      mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/addn_infer.c
  2. +4
    -0
      mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/arithmetic_infer.c
  3. +6
    -1
      mindspore/lite/examples/train_lenet/model/prepare_model.sh
  4. +7
    -3
      mindspore/lite/examples/train_lenet/prepare_and_run.sh
  5. +8
    -5
      mindspore/lite/examples/train_lenet/src/net_runner.cc
  6. +2
    -2
      mindspore/lite/examples/transfer_learning/src/net_runner.cc
  7. +2
    -0
      mindspore/lite/examples/transfer_learning/src/net_runner.h
  8. +0
    -4
      mindspore/lite/tools/converter/converter_flags.cc
  9. +51
    -0
      mindspore/lite/tools/converter/quantizer/quantize_util.cc
  10. +4
    -3
      mindspore/lite/tools/converter/quantizer/quantize_util.h
  11. +103
    -0
      mindspore/lite/tools/converter/quantizer/weight_quantizer.cc
  12. +8
    -3
      mindspore/lite/tools/converter/quantizer/weight_quantizer.h

+ 0
- 3
mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/addn_infer.c View File

@@ -53,9 +53,6 @@ int AddnInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **o
if ((inputs[i]->shape_size_ != max_dims) && (GetElementNum(inputs[i]) != GetElementNum(inputs[max_dims_idx]))) {
return NNACL_ERR;
}
if (inputs[i]->data_type_ != inputs[0]->data_type_) {
return NNACL_ERR;
}
}

for (size_t d = 0; d < input->shape_size_; ++d) {


+ 4
- 0
mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/arithmetic_infer.c View File

@@ -39,6 +39,10 @@ int ArithmeticInferShape(const TensorC *const *inputs, size_t inputs_size, Tenso
size_t input_shape1_size = input1->shape_size_;
output->format_ = input0->format_;
output->data_type_ = input0->data_type_;
if ((input0->data_type_ == kNumberTypeInt8) && (input1->data_type_ == kNumberTypeFloat32)) {
output->data_type_ = input1->data_type_;
}

if (!parameter->infer_flag_) {
return NNACL_INFER_INVALID;
}


+ 6
- 1
mindspore/lite/examples/train_lenet/model/prepare_model.sh View File

@@ -28,5 +28,10 @@ if [ ! -f "$CONVERTER" ]; then
fi

echo "============Converting========="
LD_LIBRARY_PATH=./ $CONVERTER --fmk=MINDIR --trainModel=true --modelFile=lenet_tod.mindir --outputFile=lenet_tod
QUANT_OPTIONS=""
if [[ ! -z ${QUANTIZE} ]]; then
echo "Quantizing weights"
QUANT_OPTIONS="--quantType=WeightQuant --bitNum=8 --quantWeightSize=100 --quantWeightChannel=15"
fi
LD_LIBRARY_PATH=./ $CONVERTER --fmk=MINDIR --trainModel=true --modelFile=lenet_tod.mindir --outputFile=lenet_tod $QUANT_OPTIONS


+ 7
- 3
mindspore/lite/examples/train_lenet/prepare_and_run.sh View File

@@ -2,7 +2,7 @@

display_usage()
{
echo -e "\nUsage: prepare_and_run.sh -D dataset_path [-d mindspore_docker] [-r release.tar.gz] [-t arm64|x86]\n"
echo -e "\nUsage: prepare_and_run.sh -D dataset_path [-d mindspore_docker] [-r release.tar.gz] [-t arm64|x86] [-q]\n"
}

checkopts()
@@ -10,7 +10,8 @@ checkopts()
TARGET="arm64"
DOCKER=""
MNIST_DATA_PATH=""
while getopts 'D:d:r:t:' opt
QUANTIZE=""
while getopts 'D:d:r:t:q' opt
do
case "${opt}" in
D)
@@ -31,6 +32,9 @@ checkopts()
r)
TARBALL=$OPTARG
;;
q)
QUANTIZE="QUANTIZE"
;;
*)
echo "Unknown option ${opt}!"
display_usage
@@ -64,7 +68,7 @@ fi
# Prepare the model
cd model/ || exit 1
rm -f *.ms
./prepare_model.sh $DOCKER || exit 1
QUANTIZE=${QUANTIZE} ./prepare_model.sh $DOCKER || exit 1
cd ../

# Copy the .ms model to the package folder


+ 8
- 5
mindspore/lite/examples/train_lenet/src/net_runner.cc View File

@@ -110,6 +110,9 @@ void NetRunner::InitAndFigureInputs() {
MS_ASSERT(nullptr != session_);
loop_ = mindspore::session::TrainLoop::CreateTrainLoop(session_);

if (verbose_) {
loop_->SetKernelCallBack(nullptr, after_callback);
}
acc_metrics_ = std::shared_ptr<AccuracyMetrics>(new AccuracyMetrics);

loop_->Init({acc_metrics_.get()});
@@ -125,11 +128,11 @@ void NetRunner::InitAndFigureInputs() {

float NetRunner::CalculateAccuracy(int max_tests) {
test_ds_ = Mnist(data_dir_ + "/test", "all");
TypeCast typecast_f("float32");
TypeCast typecast_f(mindspore::DataType::kNumberTypeFloat32);
Resize resize({h_, w_});
test_ds_ = test_ds_->Map({&resize, &typecast_f}, {"image"});

TypeCast typecast("int32");
TypeCast typecast(mindspore::DataType::kNumberTypeInt32);
test_ds_ = test_ds_->Map({&typecast}, {"label"});
test_ds_ = test_ds_->Batch(batch_size_, true);

@@ -144,14 +147,14 @@ float NetRunner::CalculateAccuracy(int max_tests) {
int NetRunner::InitDB() {
train_ds_ = Mnist(data_dir_ + "/train", "all");

TypeCast typecast_f("float32");
TypeCast typecast_f(mindspore::DataType::kNumberTypeFloat32);
Resize resize({h_, w_});
train_ds_ = train_ds_->Map({&resize, &typecast_f}, {"image"});

TypeCast typecast("int32");
TypeCast typecast(mindspore::DataType::kNumberTypeInt32);
train_ds_ = train_ds_->Map({&typecast}, {"label"});

train_ds_ = train_ds_->Shuffle(2);
// train_ds_ = train_ds_->Shuffle(2);
train_ds_ = train_ds_->Batch(batch_size_, true);

if (verbose_) {


+ 2
- 2
mindspore/lite/examples/transfer_learning/src/net_runner.cc View File

@@ -187,7 +187,7 @@ int NetRunner::TrainLoop() {
if (save_checkpoint_ != 0 && (i + 1) % save_checkpoint_ == 0) {
auto cpkt_fn =
ms_head_file_.substr(0, ms_head_file_.find_last_of('.')) + "_trained_" + std::to_string(i + 1) + ".ms";
session_->SaveToFile(cpkt_fn);
mindspore::lite::Model::Export(head_model_, cpkt_fn.c_str());
}

std::cout << i + 1 << ": Loss is " << loss << " [min=" << min_loss << "]" << std::endl;
@@ -213,7 +213,7 @@ int NetRunner::Main() {

if (cycles_ > 0) {
auto trained_fn = ms_head_file_.substr(0, ms_head_file_.find_last_of('.')) + "_trained.ms";
session_->SaveToFile(trained_fn);
mindspore::lite::Model::Export(head_model_, trained_fn.c_str());
}
return 0;
}


+ 2
- 0
mindspore/lite/examples/transfer_learning/src/net_runner.h View File

@@ -44,6 +44,8 @@ class NetRunner {

DataSet ds_;
mindspore::session::TrainSession *session_ = nullptr;
mindspore::lite::Model *backbone_model_ = nullptr;
mindspore::lite::Model *head_model_ = nullptr;

std::string ms_backbone_file_ = "";
std::string ms_head_file_ = "";


+ 0
- 4
mindspore/lite/tools/converter/converter_flags.cc View File

@@ -176,10 +176,6 @@ int Flags::InitTrainModel() {
std::cerr << "INPUT ILLEGAL: train model converter supporting only FP32 output tensors";
return RET_INPUT_PARAM_INVALID;
}
if (this->quantType != QuantType_QUANT_NONE) {
std::cerr << "INPUT ILLEGAL: train model converter is not supporting quantization";
return RET_INPUT_PARAM_INVALID;
}
}
return RET_OK;
}


+ 51
- 0
mindspore/lite/tools/converter/quantizer/quantize_util.cc View File

@@ -181,6 +181,57 @@ bool QuantStrategy::CanMulOpQuantized(const CNodePtr &node) const {
return true;
}

bool QuantStrategy::CanTensorQuantized(const AnfNodePtr &inputNode) const {
if (inputNode == nullptr) {
MS_LOG(INFO) << "CanTensorQuantized input is nullptr!";
return false;
}
ParameterPtr paramNode = nullptr;

if (inputNode->isa<Parameter>()) {
paramNode = inputNode->cast<ParameterPtr>();
}

if (paramNode == nullptr) {
MS_LOG(INFO) << "CanTensorQuantized invalid paramNode!";
return false;
}

auto abstract_base = paramNode->abstract();
if (abstract_base == nullptr) {
MS_LOG(INFO) << "abstract is nullptr";
return false;
}

if (!utils::isa<abstract::ShapePtr>(abstract_base->GetShapeTrack())) {
MS_LOG(INFO) << "Shape of Abstract of parameter should be ShapePtr " << paramNode->name();
return false;
}

auto weight_shape = utils::cast<abstract::ShapePtr>(abstract_base->GetShapeTrack())->shape();
if (weight_shape.size() < 2) { // do not quant single dim tensors
return false;
}

size_t shapeSize = 1;
for (auto dim : weight_shape) {
shapeSize = shapeSize * dim;
}
if (shapeSize < m_weight_size_) {
MS_LOG(INFO) << "shapeSize Invalid!" << shapeSize;
return false;
}

if (weight_shape.size() == 4) { // assume Convolution
if (weight_shape[0] <= static_cast<int>(m_conv_weight_quant_channel_threshold_)) {
MS_LOG(INFO) << "channel less m_conv_weight_quant_channel_threshold_!" << weight_shape[0];
return false;
}
}

return true;
}

QuantParamHolderPtr GetCNodeQuantHolder(const PrimitivePtr &primitive) {
MS_ASSERT(primitive != nullptr);
QuantParamHolderPtr quant_params_holder = nullptr;


+ 4
- 3
mindspore/lite/tools/converter/quantizer/quantize_util.h View File

@@ -14,8 +14,8 @@
* limitations under the License.
*/

#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZER_UTIL_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZER_UTIL_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZE_UTIL_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZE_UTIL_H_

#include <dirent.h>
#include <sys/stat.h>
@@ -83,6 +83,7 @@ class QuantStrategy {
bool CanConvOpQuantized(const CNodePtr &node) const;
bool CanMulOpQuantized(const CNodePtr &node) const;
bool CanOpPostQuantized(AnfNodePtr &node) const;
bool CanTensorQuantized(const AnfNodePtr &inputNode) const;

size_t m_weight_size_;
size_t m_conv_weight_quant_channel_threshold_;
@@ -417,4 +418,4 @@ FuncGraphPtr CopyFuncGraph(const FuncGraphPtr &);

void GetLiteParameter(const AnfNodePtr &node, ParameterPtr *param_node, tensor::TensorPtr *tensor_info);
} // namespace mindspore::lite::quant
#endif
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZE_UTIL_H_

+ 103
- 0
mindspore/lite/tools/converter/quantizer/weight_quantizer.cc View File

@@ -75,6 +75,7 @@ STATUS WeightQuantizer::SetAbstract(const tensor::TensorPtr &tensor_info, const
auto quant_param_holder = GetCNodeQuantHolder(primitive);
quant_param_holder->set_quant_type(schema::QuantType_QUANT_WEIGHT);

weight_quantized_tensors.insert({tensor_info, param_node});
return RET_OK;
}

@@ -244,6 +245,82 @@ STATUS WeightQuantizer::DoGatherQuantize(const CNodePtr &cnode) {
return RET_OK;
}

STATUS WeightQuantizer::DoOptimizerQuantize(const CNodePtr &cnode) {
auto primitive = GetValueNode<PrimitivePtr>(cnode->input(0));
MS_ASSERT(primitive != nullptr);

std::vector<int> weight_indices = {2};
if (opt::CheckPrimitiveType(cnode, prim::kPrimAdam)) {
weight_indices = {2, 3};
}
if (opt::CheckPrimitiveType(cnode, prim::kPrimSGD)) {
weight_indices = {4, 6};
}

for (int idx : weight_indices) {
auto input = cnode->input(idx);
if (!quant_strategy_->CanTensorQuantized(input)) {
MS_LOG(INFO) << "Input " << idx << "of Optimizer is not quantizable";
continue;
}
ParameterPtr param_node;
tensor::TensorPtr tensor_info;
GetLiteParameter(input, &param_node, &tensor_info);
if (param_node == nullptr || tensor_info == nullptr || tensor_info->data_type() != TypeId::kNumberTypeFloat32) {
MS_LOG(INFO) << "This Gather op " << cnode->fullname_with_scope() << " can not quant weight";
return RET_OK;
}

auto status = RET_ERROR;
if (type_id_ == kNumberTypeInt8) {
status = QuantFilter<int8_t>(tensor_info, primitive, QuantType_WeightQuant, quant_max_, quant_min_, bit_num_,
false, type_id_, idx - 1);
} else if (type_id_ == kNumberTypeInt16) {
status = QuantFilter<int16_t>(tensor_info, primitive, QuantType_WeightQuant, quant_max_, quant_min_, bit_num_,
false, type_id_, idx - 1);
}
if (status != RET_OK && status != RET_CONTINUE) {
MS_LOG(ERROR) << "QuantFilter failed : " << status;
return status;
}
status = SetAbstract(tensor_info, param_node, primitive);
if (status != RET_OK) {
MS_LOG(ERROR) << "SetAbstract failed : " << status;
return RET_ERROR;
}
}
return RET_OK;
}

STATUS WeightQuantizer::DoMarkWeightQuantizeIfQuantized(const CNodePtr &cnode) {
auto primitive = GetValueNode<PrimitivePtr>(cnode->input(0));
if (primitive == nullptr) {
MS_LOG(ERROR) << "primitive is nullptr";
return RET_ERROR;
}

auto quant_param_holder = GetCNodeQuantHolder(primitive);
if (quant_param_holder->quant_type() == schema::QuantType_QUANT_WEIGHT) {
// already marked with QUANT_WEIGHT
return RET_OK;
}

for (size_t i = 1; i < cnode->size(); i++) {
auto inputNode = cnode->input(i);
if (inputNode->isa<Parameter>()) {
ParameterPtr param_node;
tensor::TensorPtr tensor_info;
GetLiteParameter(inputNode, &param_node, &tensor_info);
auto param = weight_quantized_tensors.find(tensor_info);
if (param != weight_quantized_tensors.end()) {
quant_param_holder->set_quant_type(schema::QuantType_QUANT_WEIGHT);
continue;
}
}
}
return RET_OK;
}

STATUS WeightQuantizer::ProcessLstmWeightByIndex(const CNodePtr &cnode, const PrimitivePtr &primitive,
const int &index) {
auto op_name = cnode->fullname_with_scope();
@@ -649,6 +726,8 @@ STATUS WeightQuantizer::DoMixedQuant(const FuncGraphPtr &func_graph) {

STATUS WeightQuantizer::DoFixedQuant(const FuncGraphPtr &func_graph) {
MS_ASSERT(func_graph != nullptr);
weight_quantized_tensors.clear();

for (auto &cnode : func_graph->GetOrderedCnodes()) {
auto primitive = GetValueNode<std::shared_ptr<ops::PrimitiveC>>(cnode->input(0));
if (primitive == nullptr) {
@@ -681,10 +760,34 @@ STATUS WeightQuantizer::DoFixedQuant(const FuncGraphPtr &func_graph) {
MS_LOG(ERROR) << "DoGatherQuantize error";
return RET_ERROR;
}
} else if ((opt::CheckPrimitiveType(cnode, prim::kPrimAdam)) || (opt::CheckPrimitiveType(cnode, prim::kPrimSGD)) ||
(opt::CheckPrimitiveType(cnode, prim::kPrimApplyMomentum))) {
auto status = DoOptimizerQuantize(cnode);
if (status != RET_OK) {
MS_LOG(ERROR) << "DoOptimizerQuantize error";
return RET_ERROR;
}
} else {
MS_LOG(DEBUG) << op_name << " of type: " << primitive->name() << " no need quant";
}
}
return MarkWeightQuantizationInNodes(func_graph);
}

STATUS WeightQuantizer::MarkWeightQuantizationInNodes(const FuncGraphPtr &func_graph) {
MS_ASSERT(func_graph != nullptr);
for (auto &cnode : func_graph->GetOrderedCnodes()) {
auto primitive = GetValueNode<std::shared_ptr<ops::PrimitiveC>>(cnode->input(0));
if (primitive == nullptr) {
MS_LOG(DEBUG) << cnode->fullname_with_scope() << " : primitive is nullptr";
continue;
}
auto status = DoMarkWeightQuantizeIfQuantized(cnode);
if (status != RET_OK) {
MS_LOG(ERROR) << "MarkWeightQuantizationInNodes error marking " << cnode->fullname_with_scope();
return RET_ERROR;
}
}
return RET_OK;
}



+ 8
- 3
mindspore/lite/tools/converter/quantizer/weight_quantizer.h View File

@@ -14,8 +14,8 @@
* limitations under the License.
*/

#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H_

#include <future>
#include <memory>
@@ -43,6 +43,7 @@ class WeightQuantizer : public Quantizer {
STATUS DoQuantize(FuncGraphPtr func_graph) override;
STATUS DoConvQuantize(const CNodePtr &);
STATUS DoMulQuantize(const CNodePtr &);
STATUS DoOptimizerQuantize(const CNodePtr &);
STATUS DoLstmQuantize(const CNodePtr &cnode);
STATUS DoGatherQuantize(const CNodePtr &cnode);

@@ -57,6 +58,7 @@ class WeightQuantizer : public Quantizer {
std::unique_ptr<QuantStrategy> quant_strategy_;
size_t bit_num_{8};
std::string config_file_;
std::map<tensor::TensorPtr, ParameterPtr> weight_quantized_tensors;
PostQuantConfig config_param_;
std::vector<std::vector<std::string>> images_; // multi_input, [[mode_input_0], [model_input_1]...]
std::vector<std::unordered_map<std::string, mindspore::tensor::MSTensor *>> fp32_output_tensors_;
@@ -65,6 +67,8 @@ class WeightQuantizer : public Quantizer {
STATUS SetAbstract(const tensor::TensorPtr &tensor_info, const ParameterPtr &param_node,
const PrimitivePtr &primitive);
STATUS DoFixedQuant(const FuncGraphPtr &);
STATUS MarkWeightQuantizationInNodes(const FuncGraphPtr &);
STATUS DoMarkWeightQuantizeIfQuantized(const CNodePtr &);
STATUS RunFp32Graph(const FuncGraphPtr &);

STATUS DoMixedQuantize(const FuncGraphPtr &func_graph);
@@ -74,6 +78,7 @@ class WeightQuantizer : public Quantizer {
STATUS TryQuant(const int &bit_num_t, const ParameterPtr &param_node, const tensor::TensorPtr &tensor_info,
const PrimitivePtr &primitive);
STATUS DoQuantSearch(const FuncGraphPtr &func_graph);
STATUS DoTensorQuantize(const CNodePtr &);
};
} // namespace mindspore::lite::quant
#endif
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H_

Loading…
Cancel
Save