| @@ -25,7 +25,7 @@ int Executor::CheckInputs(const std::vector<Tensor *> &in_tensors) { | |||
| MS_LOG(ERROR) << "Graph input tensor is nullptr"; | |||
| return RET_ERROR; | |||
| } | |||
| if (inTensor->data_c() == nullptr) { | |||
| if (inTensor->data_type() != kObjectTypeTensorType && inTensor->data_c() == nullptr) { | |||
| MS_LOG(ERROR) << "Graph input tensor data is nullptr " << in_tensors; | |||
| return RET_ERROR; | |||
| } | |||
| @@ -144,7 +144,7 @@ lite::Tensor *LiteSession::ConvertTensor(const schema::Tensor &src_tensor) { | |||
| } | |||
| lite::Tensor *dst_tensor = nullptr; | |||
| if (TypeId(src_tensor.dataType()) == kObjectTypeTensorType) { | |||
| dst_tensor = new (std::nothrow) TensorList(shape, std::vector<int>()); | |||
| dst_tensor = new (std::nothrow) TensorList(shape, std::vector<int>(), src_category); | |||
| } else { | |||
| dst_tensor = new (std::nothrow) Tensor(TypeId(src_tensor.dataType()), shape, src_tensor.format(), src_category); | |||
| } | |||
| @@ -112,6 +112,9 @@ Registry TensorListFromTensorRegistry(schema::PrimitiveType_TensorListFromTensor | |||
| #endif | |||
| int TensorListFromTensor::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) { | |||
| if (!infer_flag()) { | |||
| return RET_INFER_INVALID; | |||
| } | |||
| auto input0 = inputs_[0]; | |||
| MS_ASSERT(input0 != nullptr); | |||
| std::vector<int> input0_shape = input0->shape(); | |||
| @@ -117,6 +117,9 @@ int TensorListGetItem::MergeShape(const std::vector<int> &tmp) { | |||
| } | |||
| int TensorListGetItem::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) { | |||
| if (!infer_flag()) { | |||
| return RET_INFER_INVALID; | |||
| } | |||
| auto input0 = reinterpret_cast<TensorList *>(inputs_[0]); | |||
| auto get_index = inputs_[1]; | |||
| MS_ASSERT(get_index != nullptr); | |||
| @@ -125,8 +128,8 @@ int TensorListGetItem::InferShape(std::vector<lite::Tensor *> inputs_, std::vect | |||
| return RET_ERROR; | |||
| } | |||
| if (get_index->data_c() == nullptr) { | |||
| MS_LOG(ERROR) << "get_index->data_c() is nullptr"; | |||
| return RET_NULL_PTR; | |||
| MS_LOG(DEBUG) << "get_index->data_c() is nullptr"; | |||
| return RET_INFER_INVALID; | |||
| } | |||
| index_ = reinterpret_cast<int *>(get_index->data_c())[0]; | |||
| if (index_ < 0 || index_ > (input0->ElementsNum() - 1)) { | |||
| @@ -117,6 +117,9 @@ bool TensorListStack::IsFullyDefined(const std::vector<int> &shape) const { | |||
| } | |||
| int TensorListStack::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) { | |||
| if (!infer_flag()) { | |||
| return RET_INFER_INVALID; | |||
| } | |||
| auto input0 = reinterpret_cast<TensorList *>(inputs_.front()); | |||
| MS_ASSERT(input0 != nullptr); | |||
| if (input0->ElementsNum() == 0) { | |||
| @@ -130,7 +133,7 @@ int TensorListStack::InferShape(std::vector<lite::Tensor *> inputs_, std::vector | |||
| return RET_NULL_PTR; | |||
| } | |||
| auto ele_shape_ptr = reinterpret_cast<int *>(ele_shape->data_c()); | |||
| for (int i = 0; ele_shape->ElementsNum(); ++i) { | |||
| for (int i = 0; i < ele_shape->ElementsNum(); ++i) { | |||
| output_shape_.push_back(ele_shape_ptr[i]); | |||
| } | |||
| @@ -17,6 +17,7 @@ | |||
| #include "src/runtime/kernel/arm/base/merge.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| #include "src/tensorlist.h" | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| @@ -56,31 +57,72 @@ bool MergeCPUKernel::IsReady(const std::vector<lite::Tensor *> &scope_tensors) { | |||
| std::all_of(this->in_tensors().begin() + in_tensors().size() / 2, this->in_tensors().end(), | |||
| [&](lite::Tensor *kernel_in_tensor) { | |||
| return kernel_in_tensor->IsConst() || kernel_in_tensor->IsGraphInput() || | |||
| kernel_in_tensor->ref_count() >= 1; | |||
| kernel_in_tensor->ref_count() >= 1 || | |||
| (kernel_in_tensor->data_type() == kObjectTypeTensorType); | |||
| }); | |||
| } | |||
| int MergeCPUKernel::Init() { return RET_OK; } | |||
| int MergeCPUKernel::ReSize() { return RET_ERROR; } | |||
| int MergeCPUKernel::ReSize() { return RET_OK; } | |||
| bool MergeCPUKernel::PartialInputReady(int num_begin, int num_end) { | |||
| MS_ASSERT(in_tensors_.size() == 2 * out_tensors_.size()); | |||
| bool result = (std::all_of(this->in_tensors().begin() + num_begin, this->in_tensors().begin() + num_end, | |||
| [&](lite::Tensor *kernel_in_tensor) { | |||
| return kernel_in_tensor->IsConst() || kernel_in_tensor->ref_count() >= 1 || | |||
| kernel_in_tensor->IsGraphInput() || | |||
| kernel_in_tensor->data_type() == kObjectTypeTensorType; | |||
| })) && | |||
| std::all_of(this->in_tensors_.begin() + num_begin, this->in_tensors_.begin() + num_end, | |||
| [&](lite::Tensor *in_tensor) { | |||
| if (in_tensor->data_type() != kObjectTypeTensorType) { | |||
| return in_tensor->data_c() != nullptr; | |||
| } else { | |||
| return true; | |||
| } | |||
| }); | |||
| return result; | |||
| } | |||
| int MergeCPUKernel::Run() { | |||
| MS_ASSERT(in_tensors_.size() == 2 * out_tensors_.size()); | |||
| int in_tesnor_part_one = 0; | |||
| int in_tensor_part_two = out_tensors().size(); | |||
| if (in_tensors_[in_tesnor_part_one]->data_c() != nullptr) { | |||
| int in_tensor_part_two = in_tensors_.size() / 2; | |||
| int in_tensor_part_three = in_tensors_.size(); | |||
| if (PartialInputReady(in_tesnor_part_one, in_tensor_part_two)) { | |||
| for (size_t i = 0; i < out_tensors().size(); i++) { | |||
| auto out_data = out_tensors_[i]->data_c(); | |||
| auto in_data = in_tensors_[i]->data_c(); | |||
| if (in_tensors_[i]->data_type() == kObjectTypeTensorType) { | |||
| auto in_tensor_list = reinterpret_cast<lite::TensorList *>(in_tensors_[i]); | |||
| auto out_tensor_list = reinterpret_cast<lite::TensorList *>(out_tensors_[i]); | |||
| if (std::any_of(in_tensor_list->tensors().begin(), in_tensor_list->tensors().end(), | |||
| [&](lite::Tensor *tensor) { return tensor->data_c() == nullptr; })) { | |||
| continue; | |||
| } | |||
| *out_tensor_list = *in_tensor_list; | |||
| continue; | |||
| } | |||
| MS_ASSERT(in_data != nullptr); | |||
| MS_ASSERT(out_data != nullptr); | |||
| memcpy(out_data, in_data, in_tensors_[i]->Size()); | |||
| } | |||
| } | |||
| if (in_tensors_[in_tensor_part_two]->data_c() != nullptr) { | |||
| if (PartialInputReady(in_tensor_part_two, in_tensor_part_three)) { | |||
| for (size_t i = 0; i < out_tensors().size(); i++) { | |||
| auto out_data = out_tensors_[i]->data_c(); | |||
| auto in_data = in_tensors_[i + in_tensor_part_two]->data_c(); | |||
| if (in_tensors_[i]->data_type() == kObjectTypeTensorType) { | |||
| auto in_tensor_list = reinterpret_cast<lite::TensorList *>(in_tensors_[i + in_tensor_part_two]); | |||
| auto out_tensor_list = reinterpret_cast<lite::TensorList *>(out_tensors_[i]); | |||
| if (std::any_of(in_tensor_list->tensors().begin(), in_tensor_list->tensors().end(), | |||
| [&](lite::Tensor *tensor) { return tensor->data_c() == nullptr; })) { | |||
| continue; | |||
| } | |||
| *out_tensor_list = *in_tensor_list; | |||
| continue; | |||
| } | |||
| MS_ASSERT(in_data != nullptr); | |||
| MS_ASSERT(out_data != nullptr); | |||
| memcpy(out_data, in_data, in_tensors_[i]->Size()); | |||
| @@ -39,6 +39,7 @@ class MergeCPUKernel : public LiteKernel { | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| bool PartialInputReady(int num_begin, int num_end); | |||
| private: | |||
| MergeParameter *merge_param_ = nullptr; | |||
| @@ -17,6 +17,7 @@ | |||
| #include "src/runtime/kernel/arm/base/switch.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| #include "src/tensorlist.h" | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| @@ -28,8 +29,8 @@ int SwitchCPUKernel::PostProcess() { | |||
| auto bool_tensor = in_tensors_.front(); | |||
| MS_ASSERT(bool_tensor != nullptr); | |||
| MS_ASSERT(bool_tensor->data_type() == kNumberTypeBool); | |||
| MS_ASSERT(bool_tensor->shape().size() == 1); | |||
| MS_ASSERT(bool_tensor->shape().front() == 1); | |||
| MS_ASSERT(bool_tensor->Size() == 1); | |||
| MS_ASSERT(bool_tensor->Size() == 1); | |||
| auto active = static_cast<bool *>(bool_tensor->data_c()); | |||
| if (active == nullptr) { | |||
| MS_LOG(ERROR) << "data of bool tensor is nullptr"; | |||
| @@ -47,7 +48,7 @@ int SwitchCPUKernel::PostProcess() { | |||
| int SwitchCPUKernel::Init() { return RET_OK; } | |||
| int SwitchCPUKernel::ReSize() { return RET_ERROR; } | |||
| int SwitchCPUKernel::ReSize() { return RET_OK; } | |||
| // inputs: bool*1 data*n | |||
| // output: true-data*n, false-data*n | |||
| @@ -56,8 +57,8 @@ int SwitchCPUKernel::Run() { | |||
| auto bool_tensor = in_tensors_.front(); | |||
| MS_ASSERT(bool_tensor != nullptr); | |||
| MS_ASSERT(bool_tensor->data_type() == kNumberTypeBool); | |||
| MS_ASSERT(bool_tensor->shape().size() == 1); | |||
| MS_ASSERT(bool_tensor->shape().front() == 1); | |||
| MS_ASSERT(bool_tensor->Size() == 1); | |||
| MS_ASSERT(bool_tensor->Size() == 1); | |||
| auto active = static_cast<bool *>(bool_tensor->data_c()); | |||
| if (active == nullptr) { | |||
| MS_LOG(ERROR) << "data of bool tensor is nullptr"; | |||
| @@ -68,6 +69,14 @@ int SwitchCPUKernel::Run() { | |||
| while (in_index < in_tensors_.size()) { | |||
| auto in_tensor = in_tensors_.at(in_index++); | |||
| auto out_tensor = out_tensors_.at(out_index++); | |||
| // copy for tensorlist | |||
| if (in_tensor->data_type() == kObjectTypeTensorType) { | |||
| auto in_tensor_list = reinterpret_cast<lite::TensorList *>(in_tensor); | |||
| auto out_tensor_list = reinterpret_cast<lite::TensorList *>(out_tensor); | |||
| *out_tensor_list = *in_tensor_list; | |||
| continue; | |||
| } | |||
| // copy for tensor | |||
| MS_ASSERT(in_tensor != nullptr); | |||
| MS_ASSERT(out_tensor != nullptr); | |||
| auto input = in_tensor->data_c(); | |||
| @@ -111,4 +120,5 @@ kernel::LiteKernel *CpuSwitchKernelCreator(const std::vector<lite::Tensor *> &in | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Switch, CpuSwitchKernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Switch, CpuSwitchKernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Switch, CpuSwitchKernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -554,6 +554,7 @@ REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Mod, CpuArithmeticFp32KernelC | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Mod, CpuArithmeticFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_LogicalAnd, CpuArithmeticFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_LogicalAnd, CpuArithmeticFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_LogicalAnd, CpuArithmeticFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_LogicalOr, CpuArithmeticFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Maximum, CpuArithmeticFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Minimum, CpuArithmeticFp32KernelCreator) | |||
| @@ -59,9 +59,19 @@ int TensorListFromTensorCPUKernel::Init() { | |||
| return IsCompatibleShape(); | |||
| } | |||
| int TensorListFromTensorCPUKernel::ReSize() { return RET_OK; } | |||
| int TensorListFromTensorCPUKernel::ReSize() { | |||
| auto ret = this->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed!"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int TensorListFromTensorCPUKernel::Run() { | |||
| input0_ = in_tensors_[0]; // row tensor | |||
| input1_ = in_tensors_[1]; // element_shape tensor | |||
| output0_ = out_tensors_[0]; | |||
| if (input0_->shape().size() == 0) { | |||
| MS_LOG(ERROR) << "input0_->shape().size():" << input0_->shape().size() << " must be greater than 0"; | |||
| } | |||
| @@ -114,13 +124,6 @@ kernel::LiteKernel *CpuTensorListFromTensorFp32KernelCreator(const std::vector<l | |||
| free(op_parameter); | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed! name: " << op_parameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -70,7 +70,14 @@ int TensorListGetItemCPUKernel::Run() { | |||
| return RET_OK; | |||
| } | |||
| int TensorListGetItemCPUKernel::ReSize() { return RET_OK; } | |||
| int TensorListGetItemCPUKernel::ReSize() { | |||
| auto ret = this->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed!"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *CpuTensorListGetItemFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, | |||
| @@ -93,15 +100,9 @@ kernel::LiteKernel *CpuTensorListGetItemFp32KernelCreator(const std::vector<lite | |||
| free(op_parameter); | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed! name: " << op_parameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_TensorListGetItem, CpuTensorListGetItemFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_TensorListGetItem, CpuTensorListGetItemFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -116,4 +116,5 @@ kernel::LiteKernel *CpuTensorListSetItemFp32KernelCreator(const std::vector<lite | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_TensorListSetItem, CpuTensorListSetItemFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_TensorListSetItem, CpuTensorListSetItemFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -198,4 +198,5 @@ kernel::LiteKernel *CpuTensorListStackFp32KernelCreator(const std::vector<lite:: | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_TensorListStack, CpuTensorListStackFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_TensorListStack, CpuTensorListStackFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -19,6 +19,7 @@ | |||
| #include <queue> | |||
| #include <string> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include "src/tensorlist.h" | |||
| #include "src/ops/partial.h" | |||
| #include "include/errorcode.h" | |||
| @@ -59,7 +60,7 @@ int Scheduler::Schedule(std::vector<kernel::LiteKernel *> *dst_kernels) { | |||
| MS_LOG(ERROR) << "op infer shape failed."; | |||
| return ret; | |||
| } | |||
| ret = ScheduleSubGraphToKernels(kMainSubGraphIndex, dst_kernels); | |||
| ret = ScheduleSubGraphToKernels(kMainSubGraphIndex, dst_kernels, nullptr, nullptr); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Schedule main subgraph to kernels failed."; | |||
| return ret; | |||
| @@ -115,6 +116,10 @@ int Scheduler::InferNodeShape(const lite::Model::Node *node, bool *infer_shape_i | |||
| } | |||
| primitive->set_infer_flag(!(*infer_shape_interrupt)); | |||
| auto ret = primitive->InferShape(inputs, outputs); | |||
| if (ret == RET_INFER_INVALID) { | |||
| primitive->set_infer_flag(false); | |||
| *infer_shape_interrupt = true; | |||
| } | |||
| if (ret == RET_OK) { | |||
| for (auto &output : outputs) { | |||
| if (output->ElementsNum() >= MAX_MALLOC_SIZE / static_cast<int>(sizeof(int64_t))) { | |||
| @@ -236,15 +241,15 @@ kernel::LiteKernel *Scheduler::SchedulePartialToKernel(const lite::Model::Node * | |||
| auto partial_primitive = reinterpret_cast<lite::Partial *>(primitive); | |||
| auto sub_graph_index = partial_primitive->GetSubGraphIndex(); | |||
| std::vector<kernel::LiteKernel *> sub_kernels; | |||
| auto ret = ScheduleSubGraphToKernels(sub_graph_index, &sub_kernels); | |||
| std::vector<lite::Tensor *> in_tensors; | |||
| std::vector<lite::Tensor *> out_tensors; | |||
| auto ret = ScheduleSubGraphToKernels(sub_graph_index, &sub_kernels, &in_tensors, &out_tensors); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Schedule partial failed, name: " << src_node->name_; | |||
| return nullptr; | |||
| } | |||
| auto cur_sub_graph_type = mindspore::lite::Scheduler::GetKernelSubGraphType(sub_kernels.front()); | |||
| // for kernel::LiteKernelUtil::SubgraphInputTensors in CreateSubGraphKernel | |||
| FindAllInoutKernels(sub_kernels); | |||
| auto subgraph = CreateSubGraphKernel(sub_kernels, cur_sub_graph_type); | |||
| auto subgraph = CreateSubGraphKernel(sub_kernels, &in_tensors, &out_tensors, cur_sub_graph_type); | |||
| subgraph->set_name("subgraph_" + src_node->name_); | |||
| return subgraph; | |||
| } | |||
| @@ -266,7 +271,9 @@ kernel::LiteKernel *Scheduler::ScheduleNodeToKernel(const lite::Model::Node *src | |||
| return kernel; | |||
| } | |||
| int Scheduler::ScheduleSubGraphToKernels(size_t subgraph_index, std::vector<kernel::LiteKernel *> *dst_kernels) { | |||
| int Scheduler::ScheduleSubGraphToKernels(size_t subgraph_index, std::vector<kernel::LiteKernel *> *dst_kernels, | |||
| std::vector<lite::Tensor *> *in_tensors, | |||
| std::vector<lite::Tensor *> *out_tensors) { | |||
| MS_ASSERT(src_model_ != nullptr); | |||
| MS_ASSERT(!src_model_->sub_graphs_.empty()); | |||
| MS_ASSERT(src_model_->sub_graphs_.size() > subgraph_index); | |||
| @@ -292,6 +299,14 @@ int Scheduler::ScheduleSubGraphToKernels(size_t subgraph_index, std::vector<kern | |||
| kernel->set_is_model_output(IsContain(graph_output_node_indexes_, size_t(node_index))); | |||
| dst_kernels->emplace_back(kernel); | |||
| } | |||
| if (in_tensors != nullptr) { | |||
| std::transform(subgraph->input_indices_.begin(), subgraph->input_indices_.end(), std::back_inserter(*in_tensors), | |||
| [&](const uint32_t index) { return this->src_tensors_.at(index); }); | |||
| } | |||
| if (out_tensors != nullptr) { | |||
| std::transform(subgraph->output_indices_.begin(), subgraph->output_indices_.end(), std::back_inserter(*out_tensors), | |||
| [&](const uint32_t index) { return this->src_tensors_.at(index); }); | |||
| } | |||
| return RET_OK; | |||
| } | |||
| @@ -368,7 +383,7 @@ int Scheduler::ConstructSubGraphs(std::vector<kernel::LiteKernel *> *kernels) { | |||
| } | |||
| auto cur_sub_graph_type = mindspore::lite::Scheduler::GetKernelSubGraphType(head_kernel); | |||
| auto sub_kernels = FindAllSubGraphKernels(head_kernel, &is_kernel_finish); | |||
| auto subgraph = CreateSubGraphKernel(sub_kernels, cur_sub_graph_type); | |||
| auto subgraph = CreateSubGraphKernel(sub_kernels, nullptr, nullptr, cur_sub_graph_type); | |||
| if (subgraph == nullptr) { | |||
| MS_LOG(ERROR) << "Create SubGraphKernel failed"; | |||
| return RET_ERROR; | |||
| @@ -384,12 +399,14 @@ int Scheduler::ConstructSubGraphs(std::vector<kernel::LiteKernel *> *kernels) { | |||
| } | |||
| return RET_OK; | |||
| } | |||
| bool Scheduler::MergeOpIsReady(const kernel::LiteKernel *kernel, | |||
| std::map<const kernel::LiteKernel *, bool> is_kernel_finish) { | |||
| std::map<const lite::Tensor *, bool> merge_in_tensors_map; | |||
| for (auto merge_in_tensor : kernel->in_tensors()) { | |||
| merge_in_tensors_map[merge_in_tensor] = false; | |||
| if (merge_in_tensor->category() == Tensor::CONST_TENSOR || merge_in_tensor->category() == Tensor::CONST_SCALAR) { | |||
| if (merge_in_tensor->category() == Tensor::CONST_TENSOR || merge_in_tensor->category() == Tensor::CONST_SCALAR || | |||
| merge_in_tensor->category() == Tensor::GRAPH_INPUT) { | |||
| merge_in_tensors_map[merge_in_tensor] = true; | |||
| } | |||
| for (auto merge_in_kernel : kernel->in_kernels()) { | |||
| @@ -408,12 +425,24 @@ bool Scheduler::MergeOpIsReady(const kernel::LiteKernel *kernel, | |||
| } | |||
| kernel::SubGraphKernel *Scheduler::CreateSubGraphKernel(const std::vector<kernel::LiteKernel *> &kernels, | |||
| const std::vector<lite::Tensor *> *in_tensors, | |||
| const std::vector<lite::Tensor *> *out_tensors, | |||
| kernel::SubGraphType type) { | |||
| if (type == kernel::kApuSubGraph) { | |||
| return nullptr; | |||
| } | |||
| std::vector<Tensor *> input_tensors = kernel::LiteKernelUtil::SubgraphInputTensors(kernels); | |||
| std::vector<Tensor *> output_tensors = kernel::LiteKernelUtil::SubgraphOutputTensors(kernels); | |||
| std::vector<Tensor *> input_tensors; | |||
| std::vector<Tensor *> output_tensors; | |||
| if (in_tensors != nullptr) { | |||
| input_tensors = *in_tensors; | |||
| } else { | |||
| input_tensors = kernel::LiteKernelUtil::SubgraphInputTensors(kernels); | |||
| } | |||
| if (out_tensors != nullptr) { | |||
| output_tensors = *out_tensors; | |||
| } else { | |||
| output_tensors = kernel::LiteKernelUtil::SubgraphOutputTensors(kernels); | |||
| } | |||
| std::vector<kernel::LiteKernel *> input_kernels = kernel::LiteKernelUtil::SubgraphInputNodes(kernels); | |||
| std::vector<kernel::LiteKernel *> output_kernels = kernel::LiteKernelUtil::SubgraphOutputNodes(kernels); | |||
| if (type == kernel::kGpuSubGraph) { | |||
| @@ -468,7 +497,12 @@ TypeId Scheduler::GetFirstFp32Fp16OrInt8Type(const std::vector<Tensor *> &in_ten | |||
| } | |||
| if (dtype == kObjectTypeTensorType) { | |||
| auto tensor_list = reinterpret_cast<TensorList *>(tensor); | |||
| return tensor_list->tensors_data_type(); | |||
| auto tensor_list_dtype = tensor_list->data_type(); | |||
| if (tensor_list_dtype == kNumberTypeFloat32 || tensor_list_dtype == kNumberTypeFloat16 || | |||
| tensor_list_dtype == kNumberTypeInt8 || tensor_list_dtype == kNumberTypeInt32 || | |||
| tensor_list_dtype == kNumberTypeBool) { | |||
| return tensor_list_dtype; | |||
| } | |||
| } | |||
| if (dtype == kNumberTypeFloat32 || dtype == kNumberTypeFloat16 || dtype == kNumberTypeInt8 || | |||
| dtype == kNumberTypeInt32 || dtype == kNumberTypeBool) { | |||
| @@ -53,7 +53,8 @@ class Scheduler { | |||
| // schedule a node to a kernel | |||
| kernel::LiteKernel *ScheduleNodeToKernel(const lite::Model::Node *src_node); | |||
| // schedule a Model::SubGraph into a vector of kernel and subgraph_kernel | |||
| int ScheduleSubGraphToKernels(size_t subgraph_index, std::vector<kernel::LiteKernel *> *dst_kernels); | |||
| int ScheduleSubGraphToKernels(size_t subgraph_index, std::vector<kernel::LiteKernel *> *dst_kernels, | |||
| std::vector<lite::Tensor *> *in_tensors, std::vector<lite::Tensor *> *out_tensors); | |||
| // find in_kernels_ and out_kernels of kernel, sub_graph and nodes_ in sub_graph | |||
| static void FindAllInoutKernels(const std::vector<kernel::LiteKernel *> &kernels); | |||
| @@ -63,6 +64,8 @@ class Scheduler { | |||
| // create subgraph_kernel from a vector of kernel | |||
| kernel::SubGraphKernel *CreateSubGraphKernel(const std::vector<kernel::LiteKernel *> &kernels, | |||
| const std::vector<lite::Tensor *> *in_tensors, | |||
| const std::vector<lite::Tensor *> *out_tensors, | |||
| kernel::SubGraphType type); | |||
| bool MergeOpIsReady(const kernel::LiteKernel *kernel, std::map<const kernel::LiteKernel *, bool> is_kernel_finish); | |||
| @@ -133,7 +133,7 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| void set_quant_clusters(const std::vector<float> &clusters); | |||
| bool IsConst() const { | |||
| virtual bool IsConst() const { | |||
| return (this->category_ == CONST_TENSOR || this->category_ == CONST_SCALAR) && this->data_ != nullptr; | |||
| } | |||
| @@ -24,8 +24,8 @@ | |||
| namespace mindspore { | |||
| namespace lite { | |||
| TensorList::TensorList(std::vector<int> shape, std::vector<int> element_shape) | |||
| : Tensor(kObjectTypeTensorType, shape), element_shape_(element_shape) {} | |||
| TensorList::TensorList(std::vector<int> shape, std::vector<int> element_shape, Category category) | |||
| : Tensor(kObjectTypeTensorType, shape, schema::Format::Format_NHWC, category), element_shape_(element_shape) {} | |||
| TensorList::~TensorList() { | |||
| if (!this->tensors_.empty()) { | |||
| @@ -66,6 +66,9 @@ int TensorList::CopyTensorList(const TensorList &src, bool copy_data) { | |||
| } | |||
| int TensorList::CopyTensorData(const TensorList &src) { | |||
| if (src.tensors_.empty()) { | |||
| return RET_OK; | |||
| } | |||
| for (int i = 0; i < this->ElementsNum(); ++i) { | |||
| if (src.tensors_[i] == nullptr) { | |||
| MS_LOG(ERROR) << "src tensors_[" << i << "] is nullptr!"; | |||
| @@ -115,8 +118,14 @@ int TensorList::MallocTensorListData(TypeId dtype, const std::vector<std::vector | |||
| } | |||
| int TensorList::MallocData(const mindspore::lite::Allocator *allocator) { | |||
| if (allocator != nullptr) { | |||
| allocator_ = const_cast<mindspore::lite::Allocator *>(allocator); | |||
| } | |||
| // malloc data buf of each tensor in tensors_ | |||
| for (int i = 0; i < this->ElementsNum(); ++i) { | |||
| if (tensors_.empty()) { | |||
| return RET_OK; | |||
| } | |||
| auto tensor_ptr = this->tensors_[i]; | |||
| if (tensor_ptr == nullptr) { | |||
| MS_LOG(ERROR) << "tensors_[" << i << "] is nullptr!"; | |||
| @@ -252,5 +261,8 @@ STATUS TensorList::Decode(const int *data) { | |||
| } | |||
| return RET_OK; | |||
| } | |||
| bool TensorList::IsConst() const { return this->category_ == CONST_TENSOR || this->category_ == CONST_SCALAR; } | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -60,7 +60,7 @@ class TensorList : public Tensor { | |||
| public: | |||
| TensorList() = default; | |||
| TensorList(std::vector<int> shape, std::vector<int> element_shape); | |||
| TensorList(std::vector<int> shape, std::vector<int> element_shape, Category category = VAR); | |||
| ~TensorList() override; | |||
| @@ -114,6 +114,8 @@ class TensorList : public Tensor { | |||
| STATUS Decode(const int *data); | |||
| bool IsConst() const override; | |||
| protected: | |||
| // The following functions must be masked. | |||
| void set_data(void *data) override { return; } | |||
| @@ -125,7 +125,7 @@ std::string TensorFlowUtils::GetFlattenNodeName(const std::string &input_name) { | |||
| if (input_splits[2] == "0") { | |||
| ret = input_splits[0]; | |||
| } else { | |||
| ret = input_splits[0] + input_splits[2]; // multi output node | |||
| ret = input_splits[0] + ":" + input_splits[2]; // multi output node | |||
| } | |||
| } | |||
| return ret; | |||