|
|
|
@@ -0,0 +1,217 @@ |
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
|
|
|
|
class LessNet(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(LessNet, self).__init__() |
|
|
|
self.ops = P.Less() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
return self.ops(x, y) |
|
|
|
|
|
|
|
|
|
|
|
class GreaterNet(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(GreaterNet, self).__init__() |
|
|
|
self.ops = P.Greater() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
return self.ops(x, y) |
|
|
|
|
|
|
|
|
|
|
|
class LessEqualNet(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(LessEqualNet, self).__init__() |
|
|
|
self.ops = P.LessEqual() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
return self.ops(x, y) |
|
|
|
|
|
|
|
|
|
|
|
class GreaterEqualNet(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(GreaterEqualNet, self).__init__() |
|
|
|
self.ops = P.GreaterEqual() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
return self.ops(x, y) |
|
|
|
|
|
|
|
|
|
|
|
def gen_data(): |
|
|
|
# Generate data which contains broadcast scene and two inputs are expr. |
|
|
|
np.random.seed(0) |
|
|
|
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) |
|
|
|
y0_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) |
|
|
|
x1_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float16) |
|
|
|
y1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) |
|
|
|
x2_np = np.random.randint(1, 5, 1).astype(np.int32) |
|
|
|
y2_np = np.random.randint(1, 5, 1).astype(np.int32) |
|
|
|
x3_np = np.array(768).astype(np.float32) |
|
|
|
y3_np = np.array(3072.5).astype(np.float32) |
|
|
|
|
|
|
|
x0 = Tensor(x0_np) |
|
|
|
y0 = Tensor(y0_np) |
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
x2 = Tensor(x2_np) |
|
|
|
y2 = Tensor(y2_np) |
|
|
|
x3 = Tensor(x3_np) |
|
|
|
y3 = Tensor(y3_np) |
|
|
|
return x0, y0, x1, y1, x2, y2, x3, y3 |
|
|
|
|
|
|
|
|
|
|
|
def get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): |
|
|
|
context.set_context(enable_graph_kernel=enable_graph_kernel) |
|
|
|
net_less = LessNet() |
|
|
|
less_output_0 = net_less(x0, y0).asnumpy() |
|
|
|
less_output_1 = net_less(x1, y1).asnumpy() |
|
|
|
less_output_2 = net_less(x2, y2).asnumpy() |
|
|
|
less_output_3 = net_less(x3, y3).asnumpy() |
|
|
|
return less_output_0, less_output_1, less_output_2, less_output_3 |
|
|
|
|
|
|
|
|
|
|
|
def get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): |
|
|
|
context.set_context(enable_graph_kernel=enable_graph_kernel) |
|
|
|
net_greater = GreaterNet() |
|
|
|
greater_output_0 = net_greater(x0, y0).asnumpy() |
|
|
|
greater_output_1 = net_greater(x1, y1).asnumpy() |
|
|
|
greater_output_2 = net_greater(x2, y2).asnumpy() |
|
|
|
greater_output_3 = net_greater(x3, y3).asnumpy() |
|
|
|
return greater_output_0, greater_output_1, greater_output_2, greater_output_3 |
|
|
|
|
|
|
|
|
|
|
|
def get_less_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): |
|
|
|
context.set_context(enable_graph_kernel=enable_graph_kernel) |
|
|
|
net_less_equal = LessEqualNet() |
|
|
|
less_equal_output_0 = net_less_equal(x0, y0).asnumpy() |
|
|
|
less_equal_output_1 = net_less_equal(x1, y1).asnumpy() |
|
|
|
less_equal_output_2 = net_less_equal(x2, y2).asnumpy() |
|
|
|
less_equal_output_3 = net_less_equal(x3, y3).asnumpy() |
|
|
|
return less_equal_output_0, less_equal_output_1, less_equal_output_2, less_equal_output_3 |
|
|
|
|
|
|
|
|
|
|
|
def get_greater_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): |
|
|
|
context.set_context(enable_graph_kernel=enable_graph_kernel) |
|
|
|
net_greater_equal = GreaterEqualNet() |
|
|
|
greter_equal_output_0 = net_greater_equal(x0, y0).asnumpy() |
|
|
|
greter_equal_output_1 = net_greater_equal(x1, y1).asnumpy() |
|
|
|
greter_equal_output_2 = net_greater_equal(x2, y2).asnumpy() |
|
|
|
greter_equal_output_3 = net_greater_equal(x3, y3).asnumpy() |
|
|
|
return greter_equal_output_0, greter_equal_output_1, greter_equal_output_2, greter_equal_output_3 |
|
|
|
|
|
|
|
|
|
|
|
def test_less_net(): |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() |
|
|
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True) |
|
|
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_net_output( |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3, False) |
|
|
|
|
|
|
|
assert np.all(out_gk_on_0 == out_gk_off_0) |
|
|
|
assert out_gk_on_0.shape == out_gk_off_0.shape |
|
|
|
assert np.all(out_gk_on_1 == out_gk_off_1) |
|
|
|
assert out_gk_on_1.shape == out_gk_off_1.shape |
|
|
|
assert np.all(out_gk_on_2 == out_gk_off_2) |
|
|
|
assert out_gk_on_2.shape == out_gk_off_2.shape |
|
|
|
assert np.all(out_gk_on_3 == out_gk_off_3) |
|
|
|
assert out_gk_on_3.shape == out_gk_off_3.shape |
|
|
|
|
|
|
|
|
|
|
|
def test_greater_net(): |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() |
|
|
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True) |
|
|
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_net_output( |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3, False) |
|
|
|
|
|
|
|
assert np.all(out_gk_on_0 == out_gk_off_0) |
|
|
|
assert out_gk_on_0.shape == out_gk_off_0.shape |
|
|
|
assert np.all(out_gk_on_1 == out_gk_off_1) |
|
|
|
assert out_gk_on_1.shape == out_gk_off_1.shape |
|
|
|
assert np.all(out_gk_on_2 == out_gk_off_2) |
|
|
|
assert out_gk_on_2.shape == out_gk_off_2.shape |
|
|
|
assert np.all(out_gk_on_3 == out_gk_off_3) |
|
|
|
assert out_gk_on_3.shape == out_gk_off_3.shape |
|
|
|
|
|
|
|
|
|
|
|
def test_less_equal_net(): |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() |
|
|
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_equal_net_output( |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3, True) |
|
|
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_equal_net_output( |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3, False) |
|
|
|
|
|
|
|
assert np.all(out_gk_on_0 == out_gk_off_0) |
|
|
|
assert out_gk_on_0.shape == out_gk_off_0.shape |
|
|
|
assert np.all(out_gk_on_1 == out_gk_off_1) |
|
|
|
assert out_gk_on_1.shape == out_gk_off_1.shape |
|
|
|
assert np.all(out_gk_on_2 == out_gk_off_2) |
|
|
|
assert out_gk_on_2.shape == out_gk_off_2.shape |
|
|
|
assert np.all(out_gk_on_3 == out_gk_off_3) |
|
|
|
assert out_gk_on_3.shape == out_gk_off_3.shape |
|
|
|
|
|
|
|
|
|
|
|
def test_greater_equal_net(): |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() |
|
|
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_equal_net_output( |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3, True) |
|
|
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_equal_net_output( |
|
|
|
x0, y0, x1, y1, x2, y2, x3, y3, False) |
|
|
|
|
|
|
|
assert np.all(out_gk_on_0 == out_gk_off_0) |
|
|
|
assert out_gk_on_0.shape == out_gk_off_0.shape |
|
|
|
assert np.all(out_gk_on_1 == out_gk_off_1) |
|
|
|
assert out_gk_on_1.shape == out_gk_off_1.shape |
|
|
|
assert np.all(out_gk_on_2 == out_gk_off_2) |
|
|
|
assert out_gk_on_2.shape == out_gk_off_2.shape |
|
|
|
assert np.all(out_gk_on_3 == out_gk_off_3) |
|
|
|
assert out_gk_on_3.shape == out_gk_off_3.shape |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_less_gpu(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
test_less_net() |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_greater_gpu(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
test_greater_net() |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_less_equal_gpu(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
test_less_equal_net() |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_greater_equal_gpu(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
test_greater_equal_net() |