| @@ -0,0 +1,39 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/relu_grad_impl.cuh" | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| __global__ void CalReLUGradKernel(int size, T *dy, T *y, T *dx) { | |||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||
| dx[pos] = y[pos] > static_cast<T>(0) ? dy[pos] : static_cast<T>(0); | |||
| } | |||
| } | |||
| template <typename T> | |||
| void CalReLUGrad(int size, T *dy, T *y, T *dx, cudaStream_t cuda_stream) { | |||
| CalReLUGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy, y, dx); | |||
| return; | |||
| } | |||
| template void CalReLUGrad(int size, double *dy, double *y, double *dx, cudaStream_t cuda_stream); | |||
| template void CalReLUGrad(int size, float *dy, float *y, float *dx, cudaStream_t cuda_stream); | |||
| template void CalReLUGrad(int size, half *dy, half *y, half *dx, cudaStream_t cuda_stream); | |||
| template void CalReLUGrad(int size, int8_t *dy, int8_t *y, int8_t *dx, cudaStream_t cuda_stream); | |||
| template void CalReLUGrad(int size, int16_t *dy, int16_t *y, int16_t *dx, cudaStream_t cuda_stream); | |||
| template void CalReLUGrad(int size, int32_t *dy, int32_t *y, int32_t *dx, cudaStream_t cuda_stream); | |||
| template void CalReLUGrad(int size, int64_t *dy, int64_t *y, int64_t *dx, cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,23 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_ | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| void CalReLUGrad(int input_size, T *dy, T *y, T *dx, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_ | |||
| @@ -38,7 +38,6 @@ template void CalReLU(int size, int8_t *input_addr, int8_t *output_addr, cudaStr | |||
| template void CalReLU(int size, int16_t *input_addr, int16_t *output_addr, cudaStream_t cuda_stream); | |||
| template void CalReLU(int size, int32_t *input_addr, int32_t *output_addr, cudaStream_t cuda_stream); | |||
| template void CalReLU(int size, int64_t *input_addr, int64_t *output_addr, cudaStream_t cuda_stream); | |||
| template void CalReLU(int size, uint8_t *input_addr, uint8_t *output_addr, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| __global__ void ReluV2Kernel(const size_t num, const T *x, T *y, uint32_t *mask) { | |||
| @@ -79,7 +78,6 @@ template void ReluV2(const size_t num, const int8_t *x, int8_t *y, uint32_t *mas | |||
| template void ReluV2(const size_t num, const int16_t *x, int16_t *y, uint32_t *mask, cudaStream_t cuda_stream); | |||
| template void ReluV2(const size_t num, const int32_t *x, int32_t *y, uint32_t *mask, cudaStream_t cuda_stream); | |||
| template void ReluV2(const size_t num, const int64_t *x, int64_t *y, uint32_t *mask, cudaStream_t cuda_stream); | |||
| template void ReluV2(const size_t num, const uint8_t *x, uint8_t *y, uint32_t *mask, cudaStream_t cuda_stream); | |||
| template void ReluGradV2(const size_t num, const double *dy, const uint32_t *mask, double *dx, | |||
| cudaStream_t cuda_stream); | |||
| @@ -93,5 +91,3 @@ template void ReluGradV2(const size_t num, const int32_t *dy, const uint32_t *ma | |||
| cudaStream_t cuda_stream); | |||
| template void ReluGradV2(const size_t num, const int64_t *dy, const uint32_t *mask, int64_t *dx, | |||
| cudaStream_t cuda_stream); | |||
| template void ReluGradV2(const size_t num, const uint8_t *dy, const uint32_t *mask, uint8_t *dx, | |||
| cudaStream_t cuda_stream); | |||
| @@ -18,34 +18,6 @@ | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||
| ActivationGradGpuKernel, double) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ActivationGradGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| ActivationGradGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), | |||
| ActivationGradGpuKernel, int64_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| ActivationGradGpuKernel, int32_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16), | |||
| ActivationGradGpuKernel, int16_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), | |||
| ActivationGradGpuKernel, int8_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8), | |||
| ActivationGradGpuKernel, uint8_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReLU6Grad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| @@ -42,7 +42,7 @@ class ActivationGradGpuKernel : public GpuKernel { | |||
| } | |||
| T *dy = nullptr; | |||
| T *y = nullptr; | |||
| if (mode_ == CUDNN_ACTIVATION_RELU || mode_ == CUDNN_ACTIVATION_ELU || mode_ == CUDNN_ACTIVATION_CLIPPED_RELU) { | |||
| if (mode_ == CUDNN_ACTIVATION_ELU || mode_ == CUDNN_ACTIVATION_CLIPPED_RELU) { | |||
| dy = GetDeviceAddress<T>(inputs, 0); | |||
| y = GetDeviceAddress<T>(inputs, 1); | |||
| } else { | |||
| @@ -125,7 +125,7 @@ class ActivationGradGpuKernel : public GpuKernel { | |||
| void ResetResource() noexcept override { | |||
| cudnn_handle_ = nullptr; | |||
| activation_desc_ = nullptr; | |||
| mode_ = CUDNN_ACTIVATION_RELU; | |||
| mode_ = CUDNN_ACTIVATION_SIGMOID; | |||
| data_descriptor_ = nullptr; | |||
| is_null_input_ = false; | |||
| input_size_list_.clear(); | |||
| @@ -154,8 +154,7 @@ class ActivationGradGpuKernel : public GpuKernel { | |||
| } | |||
| private: | |||
| std::map<std::string, cudnnActivationMode_t> kernel_map = {{"ReluGrad", CUDNN_ACTIVATION_RELU}, | |||
| {"ReLU6Grad", CUDNN_ACTIVATION_CLIPPED_RELU}, | |||
| std::map<std::string, cudnnActivationMode_t> kernel_map = {{"ReLU6Grad", CUDNN_ACTIVATION_CLIPPED_RELU}, | |||
| {"TanhGrad", CUDNN_ACTIVATION_TANH}, | |||
| {"EluGrad", CUDNN_ACTIVATION_ELU}, | |||
| {"SigmoidGrad", CUDNN_ACTIVATION_SIGMOID}}; | |||
| @@ -32,7 +32,5 @@ MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutpu | |||
| ReLUGpuFwdKernel, int16_t) | |||
| MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), ReLUGpuFwdKernel, | |||
| int8_t) | |||
| MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8), | |||
| ReLUGpuFwdKernel, uint8_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,46 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/nn/relu_grad_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||
| ReluGradGpuFwdKernel, double) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ReluGradGpuFwdKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| ReluGradGpuFwdKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), | |||
| ReluGradGpuFwdKernel, int64_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| ReluGradGpuFwdKernel, int32_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16), | |||
| ReluGradGpuFwdKernel, int16_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGrad, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), | |||
| ReluGradGpuFwdKernel, int8_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,99 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_RELU_GRAD_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_RELU_GRAD_KERNEL_H_ | |||
| #include <vector> | |||
| #include <map> | |||
| #include <string> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/kernel_constants.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/relu_grad_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class ReluGradGpuFwdKernel : public GpuKernel { | |||
| public: | |||
| ReluGradGpuFwdKernel() { ResetResource(); } | |||
| ~ReluGradGpuFwdKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| if (is_null_input_) { | |||
| return true; | |||
| } | |||
| T *dy = GetDeviceAddress<T>(inputs, 0); | |||
| T *y = GetDeviceAddress<T>(inputs, 1); | |||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||
| const int size = input_size_ / sizeof(T); | |||
| CalReLUGrad(size, dy, y, dx, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| InitResource(); | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(ERROR) << "Argument number is " << input_num << ", but ReluGradGpuKernel needs 2."; | |||
| return false; | |||
| } | |||
| auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0); | |||
| is_null_input_ = CHECK_NULL_INPUT(input_shape); | |||
| if (is_null_input_) { | |||
| MS_LOG(WARNING) << "ActivationGradGpuKernel input is null."; | |||
| } | |||
| size_t size = 1; | |||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||
| size *= input_shape[i]; | |||
| } | |||
| input_size_ = size * sizeof(T); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| void ResetResource() noexcept override { | |||
| is_null_input_ = false; | |||
| input_size_list_.clear(); | |||
| output_size_list_.clear(); | |||
| workspace_size_list_.clear(); | |||
| input_size_ = 0; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_); | |||
| output_size_list_.push_back(input_size_); | |||
| input_size_list_.push_back(input_size_); | |||
| } | |||
| private: | |||
| bool is_null_input_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| size_t input_size_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_RELU_GRAD_KERNEL_H_ | |||
| @@ -45,10 +45,5 @@ MS_REG_GPU_KERNEL_ONE( | |||
| ReluGradV2, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeInt64), | |||
| ReluGradV2GpuKernel, int64_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReluGradV2, | |||
| KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt8), | |||
| ReluGradV2GpuKernel, uint8_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -42,8 +42,5 @@ MS_REG_GPU_KERNEL_ONE( | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReLUV2, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeUInt32), | |||
| ReluV2GpuKernel, int64_t) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ReLUV2, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt32), | |||
| ReluV2GpuKernel, uint8_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||