| @@ -44,6 +44,10 @@ class NetWorkSlicePositive(Cell): | |||
| return ret0, ret1, ret2, ret3 | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_slice_positive(): | |||
| net = NetWorkSlicePositive() | |||
| input_np = np.arange(6*8*10).reshape(6, 8, 10).astype(np.int32) | |||
| @@ -143,7 +147,12 @@ class TensorGetItemByThreeTensors(Cell): | |||
| return ret0, ret1, ret2 | |||
| def test_getitem_by_tensors(): | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def Xtest_getitem_by_tensors(): | |||
| """This testcase may encounter a sync stream error occassionally""" | |||
| net = TensorGetItemByThreeTensors() | |||
| input_x = np.arange(6*8*10).reshape(6, 8, 10).astype(np.int32) | |||
| index_0 = np.random.randint(6, size=(3, 4, 5)).astype(np.int32) | |||
| @@ -179,6 +188,10 @@ class TensorGetItemByMixedTensorsBasicCase(Cell): | |||
| return ret0, ret1, ret2, ret3, ret4, ret5 | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_getitem_by_mixed_tensors(): | |||
| const0 = np.ones((3, 4, 5, 3), np.float32) | |||
| const1 = np.ones((3, 3, 4, 5, 5), np.float32) | |||
| @@ -217,6 +230,10 @@ class TensorSetItemByMixedTensors_0(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_mixed_tensors_0(): | |||
| value = 88.0 | |||
| net = TensorSetItemByMixedTensors_0(value) | |||
| @@ -247,6 +264,10 @@ class TensorSetItemByMixedTensors_1(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_mixed_tensors_1(): | |||
| value = 88.0 | |||
| net = TensorSetItemByMixedTensors_1(value) | |||
| @@ -277,6 +298,10 @@ class TensorSetItemByMixedTensors_2(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_mixed_tensors_2(): | |||
| value = 88.0 | |||
| net = TensorSetItemByMixedTensors_2(value) | |||
| @@ -324,6 +349,10 @@ class TensorSetItemByOneTensorWithNumber(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_one_tensor_with_number(): | |||
| value = 0.0 | |||
| net = TensorSetItemByOneTensorWithNumber(value) | |||
| @@ -348,6 +377,10 @@ class TensorSetItemByOneTensorWithTensor(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_one_tensor_with_tensor(): | |||
| net = TensorSetItemByOneTensorWithTensor() | |||
| index_np = np.random.randint(4, size=(5, 4)) | |||
| @@ -374,6 +407,10 @@ class TensorSetItemByOneTensorWithTupleOfNumber(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_one_tensor_with_tuple_number(): | |||
| value = (0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7) | |||
| net = TensorSetItemByOneTensorWithTupleOfNumber(value) | |||
| @@ -398,6 +435,10 @@ class TensorSetItemByOneTensorWithTupleOfTensor(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_one_tensor_with_tuple_tensors(): | |||
| net = TensorSetItemByOneTensorWithTupleOfTensor() | |||
| input_np = np.random.randint(6, size=(5, 4)).astype(np.int32) | |||
| @@ -428,6 +469,10 @@ class TensorSetItemByTensorsWithNumber(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_tensors_with_number(): | |||
| value = 0.0 | |||
| net = TensorSetItemByTensorsWithNumber(value) | |||
| @@ -456,6 +501,10 @@ class TensorSetItemByTensorsWithTensor(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_tensors_with_tensor(): | |||
| net = TensorSetItemByTensorsWithTensor() | |||
| index_0 = np.random.randint(6, size=(3, 4, 5)) | |||
| @@ -485,6 +534,10 @@ class TensorSetItemByTensorsWithTensorNumberError(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_tensors_with_tensor_error(): | |||
| index_0 = Tensor(np.random.randint(6, size=(3, 4, 5)), mstype.int32) | |||
| index_1 = Tensor(np.random.randint(7, size=(4, 5)), mstype.int32) | |||
| @@ -509,6 +562,10 @@ class TensorSetItemByTensorsWithTupleOfNumber(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_tensors_with_tuple_of_number(): | |||
| value = (0.0, 1.1, 2.2, 3.3, 4.4) | |||
| net = TensorSetItemByTensorsWithTupleOfNumber(value) | |||
| @@ -537,6 +594,10 @@ class TensorSetItemByTensorsWithTupleOfTensor(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_tensors_with_tuple_of_tensor(): | |||
| value_0 = np.zeros((4, 5)) | |||
| value_1 = np.ones((4, 5)) | |||
| @@ -570,6 +631,10 @@ class TensorSetItemByTensorsWithTupleOfTensorNumberError(Cell): | |||
| return ret | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_setitem_by_tensor_with_tuple_of_tensor_error(): | |||
| net = TensorSetItemByTensorsWithTupleOfTensorNumberError() | |||
| index_0_ms = Tensor(np.random.randint(6, size=(3, 4, 5)), mstype.int32) | |||
| @@ -661,6 +726,10 @@ class TensorAssignWithSlice(Cell): | |||
| return z | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_tensor_assign_slice_value_1(): | |||
| net = TensorAssignWithSlice() | |||
| a = np.arange(60).reshape(3, 4, 5) | |||
| @@ -682,6 +751,10 @@ def test_tensor_assign_slice_value_1(): | |||
| assert np.all(z == out.asnumpy()) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_tensor_assign_slice_value_2(): | |||
| net2 = TensorAssignWithSlice2() | |||
| a = np.array([1, 2, 3, 4, 5, 6, 7, 8]) | |||
| @@ -701,6 +774,10 @@ def test_tensor_assign_slice_value_2(): | |||
| assert np.all(z == out.asnumpy()) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_tensor_assign_exception(): | |||
| net = TensorAssignWithSlice() | |||
| net2 = TensorAssignWithSlice2() | |||
| @@ -886,6 +963,10 @@ class TensorAssignWithBoolTensorIndex2Error(Cell): | |||
| return a | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_tensor_assign_bool_index_0(): | |||
| a = np.arange(60).reshape(3, 4, 5) | |||
| b = a > 5 | |||
| @@ -903,6 +984,10 @@ def test_tensor_assign_bool_index_0(): | |||
| assert np.all(out.asnumpy() == res) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_tensor_assign_bool_index_1(): | |||
| a = np.arange(60).reshape(3, 4, 5) | |||
| Ta = Tensor(a, dtype=mstype.float32) | |||
| @@ -992,6 +1077,10 @@ def Xtest_tensor_slice_reduce_out_of_bounds_positive(): | |||
| assert "For 'StridedSlice' the `begin[0]` should be an int and must less than 6, but got `6`" in str(ex.value) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_tensor_range(): | |||
| a = np.arange(4*5*6).reshape(4, 5, 6).astype(np.float32) | |||
| ta = Tensor(a, mstype.float32) | |||