| @@ -0,0 +1,103 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "sparse_ftrl_impl.cuh" | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| #include "include/cuda_fp16.h" | |||
| template <typename T> | |||
| __device__ __forceinline__ T PowFunc(T x, T y) { | |||
| return pow(x, y); | |||
| } | |||
| template <> | |||
| __device__ __forceinline__ half PowFunc(half x, half y) { | |||
| return __float2half(pow(__half2float(x), __half2float(y))); | |||
| } | |||
| template <typename T> | |||
| __device__ __forceinline__ bool CompareFunc(T x, T y) { | |||
| return abs(x) > y; | |||
| } | |||
| template <> | |||
| __device__ __forceinline__ bool CompareFunc(half x, half y) { | |||
| return abs(__half2float(x)) > __half2float(y); | |||
| } | |||
| template <typename T> | |||
| __device__ __forceinline__ T Sgn(T x) { | |||
| return static_cast<T>(x != 0 ? (x > 0 ? 1 : -1) : 0); | |||
| } | |||
| template <> | |||
| __device__ __forceinline__ half Sgn(half x) { | |||
| return __float2half(__half2float(x) != 0 ? (__half2float(x) > 0 ? 1 : -1) : 0); | |||
| } | |||
| template <typename T, typename S> | |||
| __global__ void SparseApplyFtrlKernel(const T *gradient, const S *indices, const int num_index, const size_t n_stride, | |||
| const float learning_rate, const float l1_regularization, | |||
| const float l2_regularization, const float learning_rate_power, | |||
| T *variable, T *accumulation, T *linear) { | |||
| const T two = static_cast<T>(2.0); | |||
| const T learning_rate_val = static_cast<T>(learning_rate); | |||
| const T l1_regularization_val = static_cast<T>(l1_regularization); | |||
| const T l2_regularization_val = static_cast<T>(l2_regularization); | |||
| const T learning_rate_power_val = static_cast<T>(-learning_rate_power); | |||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; | |||
| pos < (num_index*n_stride); | |||
| pos += gridDim.x * blockDim.x) { | |||
| const int posn = pos / n_stride; | |||
| const int posi = pos % n_stride; | |||
| const int indexed_n = indices[posn]; | |||
| const int i = indexed_n*n_stride + posi; | |||
| const T cur_accumulation = accumulation[i] + gradient[pos] * gradient[pos]; | |||
| const T accumulation_power = PowFunc(accumulation[i], learning_rate_power_val); | |||
| const T cur_accumulation_power = PowFunc(cur_accumulation, learning_rate_power_val); | |||
| const T sigma = (cur_accumulation_power - accumulation_power) / learning_rate_val; | |||
| linear[i] += gradient[pos] - sigma * variable[i]; | |||
| variable[i] = CompareFunc(linear[i], l1_regularization_val) | |||
| ? ((l1_regularization_val * Sgn(linear[i]) - linear[i]) / | |||
| (cur_accumulation_power / learning_rate_val + two * l2_regularization_val)) | |||
| : static_cast<T>(0); | |||
| accumulation[i] = cur_accumulation; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T, typename S> | |||
| void CalSparseApplyFtrl(const T *gradient, const S *indices, const int num_index, const size_t n_stride, | |||
| const float learning_rate, const float l1_regularization, const float l2_regularization, | |||
| const float learning_rate_power, const bool use_locking, T *variable, T *accumulation, | |||
| T *linear, cudaStream_t cuda_stream) { | |||
| SparseApplyFtrlKernel<<<GET_BLOCKS(num_index*n_stride), GET_THREADS, 0, cuda_stream>>>(gradient, indices, num_index, | |||
| n_stride, learning_rate, l1_regularization, l2_regularization, learning_rate_power, variable, accumulation, linear); | |||
| return; | |||
| } | |||
| template void CalSparseApplyFtrl<float, int>(const float *gradient, const int *indices, const int num_index, | |||
| const size_t n_stride, const float learning_rate, | |||
| const float l1_regularization, const float l2_regularization, | |||
| const float learning_rate_power, const bool use_locking, float *variable, | |||
| float *accumulation, float *linear, cudaStream_t cuda_stream); | |||
| template void CalSparseApplyFtrl<half, int>(const half *gradient, const int *indices, const int num_index, | |||
| const size_t n_stride, const float learning_rate, | |||
| const float l1_regularization, const float l2_regularization, | |||
| const float learning_rate_power, const bool use_locking, half *variable, | |||
| half *accumulation, half *linear, cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,25 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SPARSE_FTRL_IMPL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SPARSE_FTRL_IMPL_H_ | |||
| template <typename T, typename S> | |||
| void CalSparseApplyFtrl(const T *gradient, const S *indices, const int num_index, const size_t n_stride, | |||
| const float learning_rate, const float l1_regularization, const float l2_regularization, | |||
| const float learning_rate_power, const bool use_locking, T *variable, T *accumulation, | |||
| T *linear, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SPARSE_FTRL_IMPL_H_ | |||
| @@ -0,0 +1,44 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/nn/sparse_ftrl_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_TWO(SparseApplyFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SparseFtrlGpuKernel, float, int) | |||
| MS_REG_GPU_KERNEL_TWO(SparseApplyFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| SparseFtrlGpuKernel, half, int) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,146 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_SPARSE_FTRL_GPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_SPARSE_FTRL_GPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/sparse_ftrl_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T, typename S> | |||
| class SparseFtrlGpuKernel : public GpuKernel { | |||
| public: | |||
| SparseFtrlGpuKernel() | |||
| : variable_size_(0), | |||
| accumulation_size_(0), | |||
| linear_size_(0), | |||
| gradient_size_(0), | |||
| indices_size_(0), | |||
| lr_(0.0f), | |||
| l1_(0.0f), | |||
| l2_(0.0f), | |||
| lr_power_(0.0f), | |||
| use_locking_(false), | |||
| num_index_(0), | |||
| n_stride_(1) {} | |||
| ~SparseFtrlGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &, | |||
| void *stream_ptr) override { | |||
| T *variable = GetDeviceAddress<T>(inputs, 0); | |||
| T *accumulation = GetDeviceAddress<T>(inputs, 1); | |||
| T *linear = GetDeviceAddress<T>(inputs, 2); | |||
| T *gradient = GetDeviceAddress<T>(inputs, 3); | |||
| S *indices = GetDeviceAddress<S>(inputs, 4); | |||
| CalSparseApplyFtrl(gradient, indices, num_index_, n_stride_, lr_, l1_, l2_, lr_power_, use_locking_, variable, | |||
| accumulation, linear, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 5) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but sparse ftrl needs 5 inputs."; | |||
| return false; | |||
| } | |||
| variable_size_ = sizeof(T); | |||
| accumulation_size_ = sizeof(T); | |||
| linear_size_ = sizeof(T); | |||
| gradient_size_ = sizeof(T); | |||
| indices_size_ = sizeof(S); | |||
| auto variable_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < variable_shape.size(); i++) { | |||
| variable_size_ *= variable_shape[i]; | |||
| if (i > 0) { | |||
| n_stride_ *= variable_shape[i]; | |||
| } | |||
| } | |||
| auto accumulation_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| for (size_t i = 0; i < accumulation_shape.size(); i++) { | |||
| accumulation_size_ *= accumulation_shape[i]; | |||
| } | |||
| auto linear_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2); | |||
| for (size_t i = 0; i < linear_shape.size(); i++) { | |||
| linear_size_ *= linear_shape[i]; | |||
| } | |||
| auto gradient_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3); | |||
| for (size_t i = 0; i < gradient_shape.size(); i++) { | |||
| gradient_size_ *= gradient_shape[i]; | |||
| } | |||
| auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 4); | |||
| for (size_t i = 0; i < indices_shape.size(); i++) { | |||
| indices_size_ *= indices_shape[i]; | |||
| } | |||
| lr_ = GetAttr<float>(kernel_node, "lr"); | |||
| l1_ = GetAttr<float>(kernel_node, "l1"); | |||
| l2_ = GetAttr<float>(kernel_node, "l2"); | |||
| lr_power_ = GetAttr<float>(kernel_node, "lr_power"); | |||
| use_locking_ = GetAttr<bool>(kernel_node, "use_locking"); | |||
| num_index_ = indices_shape[0]; | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(variable_size_); | |||
| input_size_list_.push_back(accumulation_size_); | |||
| input_size_list_.push_back(linear_size_); | |||
| input_size_list_.push_back(gradient_size_); | |||
| input_size_list_.push_back(indices_size_); | |||
| output_size_list_.push_back(0); | |||
| output_size_list_.push_back(0); | |||
| output_size_list_.push_back(0); | |||
| } | |||
| private: | |||
| size_t variable_size_; | |||
| size_t accumulation_size_; | |||
| size_t linear_size_; | |||
| size_t gradient_size_; | |||
| size_t indices_size_; | |||
| float lr_; | |||
| float l1_; | |||
| float l2_; | |||
| float lr_power_; | |||
| bool use_locking_; | |||
| int num_index_; | |||
| size_t n_stride_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_SPARSE_FTRL_GPU_KERNEL_H_ | |||
| @@ -0,0 +1,149 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| import mindspore.common.dtype as mstype | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5, use_locking=False) | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="accum") | |||
| self.linear = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="linear") | |||
| def construct(self, grad, indices): | |||
| out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) | |||
| return out | |||
| class Net_half(nn.Cell): | |||
| def __init__(self): | |||
| super(Net_half, self).__init__() | |||
| self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5, use_locking=False) | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float16)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float16)), name="accum") | |||
| self.linear = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float16)), name="linear") | |||
| def construct(self, grad, indices): | |||
| out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) | |||
| return out | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_ftrl(): | |||
| gradient = Tensor(np.ones([3, 3, 3]).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| expect_var = np.array([[[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]], | |||
| [[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]], | |||
| [[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]]]).astype(np.float32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_ftrl_sparse(): | |||
| gradient = Tensor(np.ones([2, 3, 3]).astype(np.float32)) | |||
| indices = Tensor([0, 2], mstype.int32) | |||
| expect_var = np.array([[[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]], | |||
| [[1, 1, 1], | |||
| [1, 1, 1], | |||
| [1, 1, 1]], | |||
| [[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]]]).astype(np.float32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_ftrl_half(): | |||
| gradient = Tensor(np.ones([3, 3, 3]).astype(np.float16)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| expect_var = np.array([[[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]], | |||
| [[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]], | |||
| [[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]]]).astype(np.float16) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net_half() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net_half() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_ftrl_sparse_half(): | |||
| gradient = Tensor(np.ones([2, 3, 3]).astype(np.float16)) | |||
| indices = Tensor([0, 2], mstype.int32) | |||
| expect_var = np.array([[[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]], | |||
| [[1, 1, 1], | |||
| [1, 1, 1], | |||
| [1, 1, 1]], | |||
| [[0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479], | |||
| [0.291479, 0.291479, 0.291479]]]).astype(np.float16) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net_half() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| sparse_apply_ftrl = Net_half() | |||
| sparse_apply_ftrl(gradient, indices) | |||
| assert np.all(sparse_apply_ftrl.var.data.asnumpy() == expect_var) | |||