Browse Source

!11476 fix docs

From: @zhaojichen
Reviewed-by: @c_34,@wuxuejian
Signed-off-by: @c_34
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
6fef0f6f2d
3 changed files with 6 additions and 6 deletions
  1. +3
    -3
      model_zoo/official/cv/FCN8s/README.md
  2. +1
    -1
      model_zoo/official/cv/openpose/README.md
  3. +2
    -2
      model_zoo/research/recommend/autodis/README.md

+ 3
- 3
model_zoo/official/cv/FCN8s/README.md View File

@@ -52,13 +52,13 @@ Dataset used:

在通过官方网站安装MindSpore之后,你可以通过如下步骤开始训练以及评估:

- runing on Ascend with default paramaters
- running on Ascend with default parameters

```python
# run training example
python train.py --device_id device_id

# run evaluation example with default paramaters
# run evaluation example with default parameters
python eval.py --device_id device_id
```

@@ -202,7 +202,7 @@ Dataset used:
| outputs | probability
| Loss | 0.038
| Speed | 1pc: 564.652 ms/step;
| Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/FCN)
| Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/FCN8s)

### Inference Performance



+ 1
- 1
model_zoo/official/cv/openpose/README.md View File

@@ -41,7 +41,7 @@ In the currently provided training script, the coco2017 data set is used as an e
````bash
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
````

- Create the mask dataset.


+ 2
- 2
model_zoo/research/recommend/autodis/README.md View File

@@ -32,7 +32,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s

# [Dataset](#contents)

- [1] A dataset [Criteo](https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz) used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.
- [1] A dataset Criteo used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.

# [Environment Requirements](#contents)

@@ -48,7 +48,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s

After installing MindSpore via the official website, you can start training and evaluation as follows:

- runing on Ascend
- running on Ascend

```python
# run training example


Loading…
Cancel
Save