Merge pull request !3951 from songhonglei413/testtags/v0.7.0-beta
| @@ -53,7 +53,7 @@ union PrimitiveType { | |||
| Activation, | |||
| Conv2D, | |||
| FusedBatchNorm, | |||
| CaffeBatchNorm, | |||
| BatchNorm, | |||
| BiasAdd, | |||
| Pooling, | |||
| DepthwiseConv2D, | |||
| @@ -212,8 +212,8 @@ table Conv2DGradInput { | |||
| spatial: int = 1; | |||
| } | |||
| table CaffeBatchNorm { | |||
| epsilon: float; // eg. epsilon=0.001 | |||
| table BatchNorm { | |||
| epsilon: float = 0.00001; // eg. epsilon=0.001 | |||
| } | |||
| table BiasGrad { | |||
| @@ -37,7 +37,7 @@ constexpr const float POW_NUM = 0.5; | |||
| bool IsBatchNode(const BaseRef &n) { | |||
| if (utils::isa<CNodePtr>(n) || utils::isa<ValueNodePtr>(n)) { | |||
| auto type = opt::GetCNodeType(n); | |||
| return type == schema::PrimitiveType_CaffeBatchNorm || type == schema::PrimitiveType_FusedBatchNorm; | |||
| return type == schema::PrimitiveType_BatchNorm || type == schema::PrimitiveType_FusedBatchNorm; | |||
| } | |||
| return false; | |||
| } | |||
| @@ -115,12 +115,12 @@ const void ConvBatchNormFusion::InitTransParam(const CNodePtr &bn_node, int kern | |||
| AnfNodePtr bn_bias_node = nullptr; | |||
| float eps = 0; | |||
| auto primitiveT_value = GetValueNode<std::shared_ptr<lite::PrimitiveTValue>>(bn_node->input(0)); | |||
| if (GetCNodeType(bn_node) == schema::PrimitiveType_CaffeBatchNorm) { | |||
| if (GetCNodeType(bn_node) == schema::PrimitiveType_BatchNorm) { | |||
| bn_mean_node = bn_node->input(kCaffeBNMeanIndex); | |||
| bn_variance_node = bn_node->input(kCaffeBNVarIndex); | |||
| CheckIfNodeIsParam(bn_mean_node); | |||
| CheckIfNodeIsParam(bn_variance_node); | |||
| eps = primitiveT_value->GetPrimitiveT()->value.AsCaffeBatchNorm()->epsilon; | |||
| eps = primitiveT_value->GetPrimitiveT()->value.AsBatchNorm()->epsilon; | |||
| } else if (GetCNodeType(bn_node) == schema::PrimitiveType_FusedBatchNorm) { | |||
| bn_scale_node = bn_node->input(kTFBNScaleIndex); | |||
| bn_bias_node = bn_node->input(kTFBNBiasIndex); | |||
| @@ -90,8 +90,8 @@ lite::Primitive *ModelImpl::CopyPrimitive(const schema::Primitive *srcPrim) { | |||
| return new lite::DepthwiseConv2D(const_cast<schema::Primitive *>(srcPrim)); | |||
| case schema::PrimitiveType_FusedBatchNorm: | |||
| return new lite::FusedBatchNorm(const_cast<schema::Primitive *>(srcPrim)); | |||
| case schema::PrimitiveType_CaffeBatchNorm: | |||
| return new lite::CaffeBatchNorm(const_cast<schema::Primitive *>(srcPrim)); | |||
| case schema::PrimitiveType_BatchNorm: | |||
| return new lite::BatchNorm(const_cast<schema::Primitive *>(srcPrim)); | |||
| case schema::PrimitiveType_FullConnection: | |||
| return new lite::FullConnection(const_cast<schema::Primitive *>(srcPrim)); | |||
| case schema::PrimitiveType_Power: | |||
| @@ -39,8 +39,8 @@ Primitive *Primitive::CreatePrimitive(schema::Primitive *primitive) { | |||
| return new lite::DepthwiseConv2D(const_cast<schema::Primitive *>(primitive)); | |||
| case schema::PrimitiveType_FusedBatchNorm: | |||
| return new lite::FusedBatchNorm(const_cast<schema::Primitive *>(primitive)); | |||
| case schema::PrimitiveType_CaffeBatchNorm: | |||
| return new lite::CaffeBatchNorm(const_cast<schema::Primitive *>(primitive)); | |||
| case schema::PrimitiveType_BatchNorm: | |||
| return new lite::BatchNorm(const_cast<schema::Primitive *>(primitive)); | |||
| case schema::PrimitiveType_FullConnection: | |||
| return new lite::FullConnection(const_cast<schema::Primitive *>(primitive)); | |||
| case schema::PrimitiveType_Power: | |||
| @@ -90,10 +90,10 @@ class Pooling : public Primitive { | |||
| int pad_r_ = 0; | |||
| }; | |||
| class CaffeBatchNorm : public Primitive { | |||
| class BatchNorm : public Primitive { | |||
| public: | |||
| explicit CaffeBatchNorm(schema::Primitive *primitive) : Primitive(primitive) {} | |||
| const schema::CaffeBatchNorm *GetAttribute() const { return this->primitive->value_as_CaffeBatchNorm(); } | |||
| explicit BatchNorm(schema::Primitive *primitive) : Primitive(primitive) {} | |||
| const schema::BatchNorm *GetAttribute() const { return this->primitive->value_as_BatchNorm(); } | |||
| }; | |||
| class FusedBatchNorm : public Primitive { | |||
| @@ -39,6 +39,7 @@ | |||
| #include "src/runtime/kernel/arm/opclib/fp32/activation.h" | |||
| #include "src/runtime/kernel/arm/opclib/fp32/arithmetic.h" | |||
| #include "src/runtime/kernel/arm/opclib/fused_batchnorm.h" | |||
| #include "src/runtime/kernel/arm/opclib/fp32/batchnorm.h" | |||
| #include "src/runtime/kernel/arm/opclib/power.h" | |||
| #include "src/runtime/kernel/arm/opclib/fp32/range.h" | |||
| #include "src/runtime/kernel/arm/opclib/fp32/local_response_norm.h" | |||
| @@ -70,6 +71,18 @@ | |||
| #include "src/runtime/kernel/arm/opclib/fp32/lstm.h" | |||
| namespace mindspore::kernel { | |||
| OpParameter *PopulateBatchNorm(const lite::Primitive *primitive) { | |||
| BatchNormParameter *batch_norm_param = new (std::nothrow) BatchNormParameter(); | |||
| if (batch_norm_param == nullptr) { | |||
| MS_LOG(ERROR) << "new BatchNormParameter failed."; | |||
| return nullptr; | |||
| } | |||
| batch_norm_param->op_parameter_.type_ = primitive->Type(); | |||
| auto param = primitive->Value()->value_as_BatchNorm(); | |||
| batch_norm_param->epsilon_ = param->epsilon(); | |||
| return reinterpret_cast<OpParameter *>(batch_norm_param); | |||
| } | |||
| OpParameter *PopulateFillParameter(const lite::Primitive *primitive) { | |||
| auto param = primitive->Value()->value_as_Fill(); | |||
| FillParameter *fill_param = new (std::nothrow) FillParameter(); | |||
| @@ -1190,6 +1203,7 @@ PopulateParameterRegistry::PopulateParameterRegistry() { | |||
| populate_parameter_funcs_[schema::PrimitiveType_DeDepthwiseConv2D] = PopulateDeconvDwParameter; | |||
| populate_parameter_funcs_[schema::PrimitiveType_DeConv2D] = PopulateDeconvParameter; | |||
| populate_parameter_funcs_[schema::PrimitiveType_FusedBatchNorm] = PopulateFusedBatchNorm; | |||
| populate_parameter_funcs_[schema::PrimitiveType_BatchNorm] = PopulateBatchNorm; | |||
| populate_parameter_funcs_[schema::PrimitiveType_FullConnection] = PopulateFullconnectionParameter; | |||
| populate_parameter_funcs_[schema::PrimitiveType_Power] = PopulatePowerParameter; | |||
| populate_parameter_funcs_[schema::PrimitiveType_LocalResponseNormalization] = PopulateLocalResponseNormParameter; | |||
| @@ -0,0 +1,98 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/arm/fp32/batchnorm.h" | |||
| #include <cmath> | |||
| #include "schema/model_generated.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| #include "src/runtime/runtime_api.h" | |||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_BatchNorm; | |||
| namespace mindspore::kernel { | |||
| int BatchnormCPUKernel::Init() { return RET_OK; } | |||
| int BatchnormCPUKernel::ReSize() { return RET_OK; } | |||
| int BatchnormCPUKernel::DoExecute(int tid) { | |||
| int count = MSMIN(thread_unit_, units_ - tid * thread_unit_); | |||
| if (count <= 0) { | |||
| return RET_OK; | |||
| } | |||
| int offset = tid * thread_unit_ * channel_; | |||
| BatchNorm(in_addr_ + offset, mean_addr_, var_addr_, count, channel_, batchnorm_param_->epsilon_, out_addr_ + offset); | |||
| return RET_OK; | |||
| } | |||
| int BatchNormRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) { | |||
| auto g_kernel = reinterpret_cast<BatchnormCPUKernel *>(cdata); | |||
| auto ret = g_kernel->DoExecute(task_id); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "BatchnormRun error task_id[" << task_id << "] error_code[" << ret << "]"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int BatchnormCPUKernel::Run() { | |||
| in_addr_ = reinterpret_cast<float *>(inputs_.at(0)->Data()); | |||
| mean_addr_ = reinterpret_cast<float *>(inputs_.at(1)->Data()); | |||
| var_addr_ = reinterpret_cast<float *>(inputs_.at(2)->Data()); | |||
| out_addr_ = reinterpret_cast<float *>(outputs_.at(0)->Data()); | |||
| auto input_shapes = inputs_[0]->shape(); | |||
| channel_ = input_shapes[3]; | |||
| units_ = 1; | |||
| for (int i = 0; i < 3; i++) { | |||
| units_ *= input_shapes[i]; | |||
| } | |||
| thread_count_ = MSMIN(thread_count_, units_); | |||
| thread_unit_ = UP_DIV(units_, thread_count_); | |||
| int ret = LiteBackendParallelLaunch(BatchNormRun, this, thread_count_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "BatchnormRun error error_code[" << ret << "]"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *CpuBatchnormKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs, | |||
| const std::vector<lite::tensor::Tensor *> &outputs, | |||
| OpParameter *opParameter, const lite::Context *ctx, | |||
| const kernel::KernelKey &desc) { | |||
| MS_ASSERT(opParameter != nullptr); | |||
| MS_ASSERT(desc.type == schema::PrimitiveType_BatchNorm); | |||
| auto *kernel = new (std::nothrow) BatchnormCPUKernel(opParameter, inputs, outputs, ctx); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "new BatchNormCPUKernel fail!"; | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_BatchNorm, CpuBatchnormKernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -0,0 +1,56 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCHNORM_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCHNORM_H_ | |||
| #include <vector> | |||
| #include "src/lite_kernel.h" | |||
| #include "include/context.h" | |||
| #include "src/runtime/kernel/arm/opclib/fp32/batchnorm.h" | |||
| using mindspore::lite::Context; | |||
| namespace mindspore::kernel { | |||
| class BatchnormCPUKernel : public LiteKernel { | |||
| public: | |||
| BatchnormCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs, | |||
| const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx) | |||
| : LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->thread_num_) { | |||
| batchnorm_param_ = reinterpret_cast<BatchNormParameter *>(parameter); | |||
| } | |||
| ~BatchnormCPUKernel() override { delete batchnorm_param_; } | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| int DoExecute(int tid); | |||
| private: | |||
| int thread_count_; | |||
| int thread_unit_; | |||
| int units_; | |||
| int channel_; | |||
| float *in_addr_; | |||
| float *mean_addr_; | |||
| float *var_addr_; | |||
| float *out_addr_; | |||
| const Context *ctx_; | |||
| BatchNormParameter *batchnorm_param_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_BATCHNORM_H_ | |||
| @@ -0,0 +1,27 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/arm/opclib/fp32/batchnorm.h" | |||
| void BatchNorm(const float *input_ptr, const float *mean_ptr, const float *variance_ptr, int units, int channel, | |||
| float epsilon, float *output_ptr) { | |||
| for (int u = 0; u < units; u++) { | |||
| for (int c = 0; c < channel; c++) { | |||
| auto variance_sqrt = sqrt(variance_ptr[c] + epsilon); | |||
| output_ptr[u * channel + c] = (input_ptr[u * channel + c] - mean_ptr[c]) / variance_sqrt; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,30 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_FP32_BATCHNORM_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_FP32_BATCHNORM_H_ | |||
| #include "src/runtime/kernel/arm/opclib/op_base.h" | |||
| struct BatchNormParameter { | |||
| OpParameter op_parameter_; | |||
| float epsilon_; | |||
| }; | |||
| void BatchNorm(const float *input_ptr, const float *mean_ptr, const float *variance_ptr, int count, int channel, | |||
| float epsilon, float *output_ptr); | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_FUSED_BATCHNORM_H_ | |||
| @@ -96,8 +96,8 @@ MetaGraphTptr BuildCaffeGraph(schema::PrimitiveType conv_type) { | |||
| bn_node->inputIndex = {2, 3, 4}; | |||
| bn_node->outputIndex = {5}; | |||
| bn_node->primitive = std::make_unique<schema::PrimitiveT>(); | |||
| bn_node->primitive->value.type = schema::PrimitiveType_CaffeBatchNorm; | |||
| auto prim2 = new schema::CaffeBatchNormT; | |||
| bn_node->primitive->value.type = schema::PrimitiveType_BatchNorm; | |||
| auto prim2 = new schema::BatchNormT; | |||
| bn_node->primitive->value.value = prim2; | |||
| bn_node->name = "bn"; | |||
| meta_graph->nodes.emplace_back(std::move(bn_node)); | |||
| @@ -0,0 +1,100 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include "mindspore/core/utils/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/src/runtime/kernel/arm/opclib/fp32/batchnorm.h" | |||
| #include "mindspore/lite/src/runtime/kernel/arm/opclib/fused_batchnorm.h" | |||
| #include "mindspore/lite/src/kernel_registry.h" | |||
| #include "mindspore/lite/src/lite_kernel.h" | |||
| #include "mindspore/lite/src/common/file_utils.h" | |||
| namespace mindspore { | |||
| class TestBatchnormFp32 : public mindspore::Common { | |||
| public: | |||
| TestBatchnormFp32() {} | |||
| }; | |||
| TEST_F(TestBatchnormFp32, BNTest) { | |||
| std::vector<float> in_data = {0.0669681, 0.959215, 0.252686, 0.613594, 0.811776, 0.139469, 0.322848, 0.118354, | |||
| 0.082978, 0.399467, 0.961267, 0.0247456, 0.0714259, 0.0791484, 0.0648625, 0.561612, | |||
| 0.412069, 0.311492, 0.46109, 0.377125, 0.369283, 0.0332446, 0.696142, 0.715973, | |||
| 0.525524, 0.477265, 0.0336351, 0.751577, 0.377548, 0.964603, 0.0196834, 0.174865}; | |||
| std::vector<float> in_data1 = {0.855446, 0.821765, 0.281008, 0.0798653, 0.22294, 0.793782, 0.963222, 0.17851, | |||
| 0.667549, 0.274381, 0.592842, 0.216552, 0.190274, 0.237873, 0.610063, 0.307559, | |||
| 0.830007, 0.760957, 0.583265, 0.763793, 0.456372, 0.391378, 0.547915, 0.862198, | |||
| 0.510794, 0.826776, 0.515894, 0.30071, 0.404987, 0.184773}; | |||
| std::vector<float> in_data2 = {0.712438, 0.4927, 0.078419, 0.310429, 0.546871, 0.0667141, 0.874321, 0.0265647, | |||
| 0.685165, 0.732586, 0.952889, 0.506402, 0.540784, 0.131119, 0.357713, 0.678992, | |||
| 0.960839, 0.340706, 0.697678, 0.398146, 0.313321, 0.6485, 0.739153, 0.00190134, | |||
| 0.536842, 0.996873, 0.445276, 0.371212, 0.420397, 0.0930115}; | |||
| std::vector<float> in_data3(32, 1); | |||
| std::vector<float> in_data4(32, 0); | |||
| std::vector<lite::tensor::Tensor *> inputs_tensor; | |||
| std::vector<lite::tensor::Tensor *> outputs_tensor; | |||
| BatchNormParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm; | |||
| op_param.epsilon_ = 0.001f; | |||
| std::vector<int> in_shape = {1, 2, 4, 4}; | |||
| lite::tensor::Tensor input0_tensor; | |||
| lite::tensor::Tensor input1_tensor; | |||
| lite::tensor::Tensor input2_tensor; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| inputs_tensor.push_back(&input1_tensor); | |||
| inputs_tensor.push_back(&input2_tensor); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| std::vector<float> output(32); | |||
| std::vector<float> corr_out(32); | |||
| std::vector<int> output_shape = {1, 2, 4, 4}; | |||
| lite::tensor::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_BatchNorm}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::Context ctx; | |||
| ctx.thread_num_ = 7; | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| FusedBatchNorm(in_data.data(), in_data3.data(), in_data4.data(), in_data1.data(), in_data2.data(), in_shape.data(), | |||
| 0.001f, corr_out.data()); | |||
| printf("==================output data=================\n"); | |||
| for (int i = 0; i < 1 * 28; i++) { | |||
| std::cout << output[i] << " ,"; | |||
| } | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), 32, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -50,7 +50,7 @@ STATUS ConvBNFusionPass::DefinePattern() { | |||
| convOp->types = {schema::PrimitiveType_Conv2D, schema::PrimitiveType_DepthwiseConv2D}; | |||
| auto bnOp = std::make_shared<PatternOp>(); | |||
| bnOp->id = DST_NAME; | |||
| bnOp->types = {schema::PrimitiveType_FusedBatchNorm, schema::PrimitiveType_CaffeBatchNorm}; | |||
| bnOp->types = {schema::PrimitiveType_FusedBatchNorm, schema::PrimitiveType_BatchNorm}; | |||
| bnOp->left = convOp; | |||
| std::unique_ptr<FusionPattern> fusionPattern(new (std::nothrow) FusionPattern("ConvBatchNormFusion")); | |||
| @@ -208,8 +208,8 @@ STATUS ConvBNFusionPass::GetBnEpsilon(schema::MetaGraphT *graph, std::shared_ptr | |||
| MS_ASSERT(bnNode != nullptr); | |||
| if (bnNode->primitive->value.type == schema::PrimitiveType_FusedBatchNorm) { | |||
| eps = bnNode->primitive->value.AsFusedBatchNorm()->epsilon; | |||
| } else if (bnNode->primitive->value.type == schema::PrimitiveType_CaffeBatchNorm) { | |||
| eps = bnNode->primitive->value.AsCaffeBatchNorm()->epsilon; | |||
| } else if (bnNode->primitive->value.type == schema::PrimitiveType_BatchNorm) { | |||
| eps = bnNode->primitive->value.AsBatchNorm()->epsilon; | |||
| } else { | |||
| MS_LOG(ERROR) << "match pattern has error, " << bnNode->name.c_str() << " not BatchNorm node"; | |||
| return RET_ERROR; | |||
| @@ -28,13 +28,11 @@ static const int CAFFE_BATCHNORMAL_TOP_SIZE = 1; | |||
| namespace mindspore { | |||
| namespace lite { | |||
| using STATUS = int; | |||
| STATUS CaffeBatchNormParser::Parse(const caffe::LayerParameter &proto, | |||
| const caffe::LayerParameter &weight, | |||
| schema::CNodeT *op, | |||
| std::vector<schema::TensorT *> *weightVec) { | |||
| STATUS CaffeBatchNormParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, | |||
| schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) { | |||
| op->name = proto.name(); | |||
| // caffe batch norm attr | |||
| std::unique_ptr<FusedBatchNormT> attr(new FusedBatchNormT()); | |||
| std::unique_ptr<schema::BatchNormT> attr(new schema::BatchNormT()); | |||
| const caffe::BatchNormParameter batchNormParam = proto.batch_norm_param(); | |||
| // check bottom size | |||
| @@ -98,7 +96,7 @@ STATUS CaffeBatchNormParser::Parse(const caffe::LayerParameter &proto, | |||
| weightVec->push_back(beta); | |||
| op->primitive = std::make_unique<schema::PrimitiveT>(); | |||
| op->primitive->value.type = schema::PrimitiveType_FusedBatchNorm; | |||
| op->primitive->value.type = schema::PrimitiveType_BatchNorm; | |||
| op->primitive->value.value = attr.release(); | |||
| return RET_OK; | |||
| @@ -107,5 +105,3 @@ STATUS CaffeBatchNormParser::Parse(const caffe::LayerParameter &proto, | |||
| CaffeNodeRegistrar g_caffeBatchNormParser("BatchNorm", new CaffeBatchNormParser()); | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -61,7 +61,7 @@ schema::MetaGraphT *CaffeModelParser::Parse(const std::string &modelFile, const | |||
| caffe::NetParameter weight; | |||
| if (ReadProtoFromBinaryFile((const char *)weightFile.c_str(), &weight) != RET_OK) { | |||
| MS_LOG(ERROR) << "Read caffemodel file failed, model path: " << weightFile; | |||
| MS_LOG(ERROR) << "Read caffemodel file failed, model path: " << weightFile; | |||
| return nullptr; | |||
| } | |||
| @@ -88,14 +88,13 @@ schema::MetaGraphT *CaffeModelParser::Parse(const std::string &modelFile, const | |||
| SetAllTensors(tensorCache, subGraphDef.get()); | |||
| graph = move(subGraphDef); | |||
| ConvertCaffeBatchNorm(graph.get()); | |||
| // ConvertCaffeBatchNorm(graph.get()); | |||
| return graph.release(); | |||
| // return Fb2Anf(graph.release()); | |||
| // return Fb2Anf(graph.release()); | |||
| } | |||
| STATUS CaffeModelParser::SetOpInputIdx(const caffe::LayerParameter &layer, | |||
| schema::CNodeT *op, | |||
| STATUS CaffeModelParser::SetOpInputIdx(const caffe::LayerParameter &layer, schema::CNodeT *op, | |||
| TensorCache *tensorCache) { | |||
| for (int i = 0; i < layer.bottom_size(); i++) { | |||
| int index = tensorCache->FindTensor(layer.bottom(i)); | |||
| @@ -109,8 +108,7 @@ STATUS CaffeModelParser::SetOpInputIdx(const caffe::LayerParameter &layer, | |||
| return RET_OK; | |||
| } | |||
| STATUS CaffeModelParser::SetOpOutputIdx(const caffe::LayerParameter &layer, | |||
| schema::CNodeT *op, | |||
| STATUS CaffeModelParser::SetOpOutputIdx(const caffe::LayerParameter &layer, schema::CNodeT *op, | |||
| TensorCache *tensorCache) { | |||
| for (int i = 0; i < layer.top_size(); i++) { | |||
| std::unique_ptr<schema::TensorT> msTensor(new schema::TensorT()); | |||
| @@ -183,7 +181,7 @@ STATUS CaffeModelParser::ParseLayer(const caffe::NetParameter &proto, const caff | |||
| } | |||
| msTensor->nodeType = schema::NodeType_ValueNode; | |||
| msTensor->refCount = 1; | |||
| msTensor->dataType = kNumberTypeFloat32; | |||
| msTensor->dataType = kNumberTypeFloat32; | |||
| tensorCache->AddTensor(layer.top(0), msTensor.release(), GRAPH_INPUT); | |||
| } else { | |||
| if (skipedLayerType.find(layer.type()) != skipedLayerType.end()) { | |||
| @@ -240,7 +238,7 @@ STATUS CaffeModelParser::GetModelInput(const caffe::NetParameter &proto, TensorC | |||
| msTensor->dims.push_back(proto.input_dim(j)); | |||
| } | |||
| msTensor->refCount = schema::NodeType_ValueNode; | |||
| msTensor->dataType = kNumberTypeFloat32; | |||
| msTensor->dataType = kNumberTypeFloat32; | |||
| tensorCache->AddTensor(proto.input(i), msTensor.release(), GRAPH_INPUT); | |||
| } | |||
| @@ -251,7 +249,7 @@ STATUS CaffeModelParser::GetModelInput(const caffe::NetParameter &proto, TensorC | |||
| msTensor->dims.push_back(shape.dim(j)); | |||
| } | |||
| msTensor->refCount = schema::NodeType_ValueNode; | |||
| msTensor->dataType = kNumberTypeFloat32; | |||
| msTensor->dataType = kNumberTypeFloat32; | |||
| tensorCache->AddTensor(proto.input(i), msTensor.release(), GRAPH_INPUT); | |||
| } | |||
| return RET_OK; | |||
| @@ -279,7 +277,7 @@ void CaffeModelParser::ConvertCaffeBatchNorm(schema::MetaGraphT *meta_graph) { | |||
| scaleTensor->dataType = TypeId::kNumberTypeFloat32; | |||
| scaleTensor->data.resize(shapeSize * sizeof(float)); | |||
| auto scaleData = reinterpret_cast<float *>(scaleTensor->data.data()); | |||
| for (size_t i = 0 ; i < shapeSize; i++) { | |||
| for (size_t i = 0; i < shapeSize; i++) { | |||
| scaleData[i] = 1; | |||
| } | |||
| @@ -291,7 +289,7 @@ void CaffeModelParser::ConvertCaffeBatchNorm(schema::MetaGraphT *meta_graph) { | |||
| biasTensor->dataType = TypeId::kNumberTypeInt32; | |||
| biasTensor->data.resize(shapeSize * sizeof(int32_t)); | |||
| auto biasData = reinterpret_cast<int32_t *>(biasTensor->data.data()); | |||
| for (size_t i = 0 ; i < shapeSize; i++) { | |||
| for (size_t i = 0; i < shapeSize; i++) { | |||
| biasData[i] = 0; | |||
| } | |||
| @@ -304,4 +302,3 @@ void CaffeModelParser::ConvertCaffeBatchNorm(schema::MetaGraphT *meta_graph) { | |||
| } | |||
| } // namespace lite | |||
| } // namespace mindspore | |||