Merge pull request !1434 from heleiwang/fix_redundant_logtags/v0.5.0-beta
| @@ -1,9 +1,12 @@ | |||||
| #!/bin/bash | #!/bin/bash | ||||
| rm /tmp/citeseer/mindrecord/* | |||||
| SRC_PATH=/tmp/citeseer/dataset | |||||
| MINDRECORD_PATH=/tmp/citeseer/mindrecord | |||||
| rm -f $MINDRECORD_PATH/* | |||||
| python writer.py --mindrecord_script citeseer \ | python writer.py --mindrecord_script citeseer \ | ||||
| --mindrecord_file "/tmp/citeseer/mindrecord/citeseer_mr" \ | |||||
| --mindrecord_file "$MINDRECORD_PATH/citeseer_mr" \ | |||||
| --mindrecord_partitions 1 \ | --mindrecord_partitions 1 \ | ||||
| --mindrecord_header_size_by_bit 18 \ | --mindrecord_header_size_by_bit 18 \ | ||||
| --mindrecord_page_size_by_bit 20 \ | --mindrecord_page_size_by_bit 20 \ | ||||
| --graph_api_args "/tmp/citeseer/dataset/citeseer.content:/tmp/citeseer/dataset/citeseer.cites" | |||||
| --graph_api_args "$SRC_PATH/citeseer.content:$SRC_PATH/citeseer.cites" | |||||
| @@ -1,9 +1,12 @@ | |||||
| #!/bin/bash | #!/bin/bash | ||||
| rm /tmp/cora/mindrecord/* | |||||
| SRC_PATH=/tmp/cora/dataset | |||||
| MINDRECORD_PATH=/tmp/cora/mindrecord | |||||
| rm -f $MINDRECORD_PATH/* | |||||
| python writer.py --mindrecord_script cora \ | python writer.py --mindrecord_script cora \ | ||||
| --mindrecord_file "/tmp/cora/mindrecord/cora_mr" \ | |||||
| --mindrecord_file "$MINDRECORD_PATH/cora_mr" \ | |||||
| --mindrecord_partitions 1 \ | --mindrecord_partitions 1 \ | ||||
| --mindrecord_header_size_by_bit 18 \ | --mindrecord_header_size_by_bit 18 \ | ||||
| --mindrecord_page_size_by_bit 20 \ | --mindrecord_page_size_by_bit 20 \ | ||||
| --graph_api_args "/tmp/cora/dataset/cora_content.csv:/tmp/cora/dataset/cora_cites.csv" | |||||
| --graph_api_args "$SRC_PATH/cora_content.csv:$SRC_PATH/cora_cites.csv" | |||||
| @@ -51,7 +51,7 @@ Status Graph::CreateTensorByVector(const std::vector<std::vector<T>> &data, Data | |||||
| RETURN_STATUS_UNEXPECTED("Data type not compatible"); | RETURN_STATUS_UNEXPECTED("Data type not compatible"); | ||||
| } | } | ||||
| if (data.empty()) { | if (data.empty()) { | ||||
| RETURN_STATUS_UNEXPECTED("Input data is emply"); | |||||
| RETURN_STATUS_UNEXPECTED("Input data is empty"); | |||||
| } | } | ||||
| std::shared_ptr<Tensor> tensor; | std::shared_ptr<Tensor> tensor; | ||||
| size_t m = data.size(); | size_t m = data.size(); | ||||
| @@ -74,7 +74,7 @@ Status Graph::CreateTensorByVector(const std::vector<std::vector<T>> &data, Data | |||||
| template <typename T> | template <typename T> | ||||
| Status Graph::ComplementVector(std::vector<std::vector<T>> *data, size_t max_size, T default_value) { | Status Graph::ComplementVector(std::vector<std::vector<T>> *data, size_t max_size, T default_value) { | ||||
| if (!data || data->empty()) { | if (!data || data->empty()) { | ||||
| RETURN_STATUS_UNEXPECTED("Input data is emply"); | |||||
| RETURN_STATUS_UNEXPECTED("Input data is empty"); | |||||
| } | } | ||||
| for (std::vector<T> &vec : *data) { | for (std::vector<T> &vec : *data) { | ||||
| size_t size = vec.size(); | size_t size = vec.size(); | ||||
| @@ -93,6 +93,9 @@ Status Graph::GetEdges(EdgeType edge_type, EdgeIdType edge_num, std::shared_ptr< | |||||
| Status Graph::GetAllNeighbors(const std::vector<NodeIdType> &node_list, NodeType neighbor_type, | Status Graph::GetAllNeighbors(const std::vector<NodeIdType> &node_list, NodeType neighbor_type, | ||||
| std::shared_ptr<Tensor> *out) { | std::shared_ptr<Tensor> *out) { | ||||
| if (node_list.empty()) { | |||||
| RETURN_STATUS_UNEXPECTED("Input node_list is empty."); | |||||
| } | |||||
| if (node_type_map_.find(neighbor_type) == node_type_map_.end()) { | if (node_type_map_.find(neighbor_type) == node_type_map_.end()) { | ||||
| std::string err_msg = "Invalid neighbor type:" + std::to_string(neighbor_type); | std::string err_msg = "Invalid neighbor type:" + std::to_string(neighbor_type); | ||||
| RETURN_STATUS_UNEXPECTED(err_msg); | RETURN_STATUS_UNEXPECTED(err_msg); | ||||
| @@ -147,7 +150,7 @@ Status Graph::GetNodeDefaultFeature(FeatureType feature_type, std::shared_ptr<Fe | |||||
| Status Graph::GetNodeFeature(const std::shared_ptr<Tensor> &nodes, const std::vector<FeatureType> &feature_types, | Status Graph::GetNodeFeature(const std::shared_ptr<Tensor> &nodes, const std::vector<FeatureType> &feature_types, | ||||
| TensorRow *out) { | TensorRow *out) { | ||||
| if (!nodes || nodes->Size() == 0) { | if (!nodes || nodes->Size() == 0) { | ||||
| RETURN_STATUS_UNEXPECTED("Inpude nodes is empty"); | |||||
| RETURN_STATUS_UNEXPECTED("Input nodes is empty"); | |||||
| } | } | ||||
| TensorRow tensors; | TensorRow tensors; | ||||
| for (auto f_type : feature_types) { | for (auto f_type : feature_types) { | ||||
| @@ -156,7 +156,7 @@ class Graph { | |||||
| std::unordered_map<EdgeIdType, std::shared_ptr<Edge>> edge_id_map_; | std::unordered_map<EdgeIdType, std::shared_ptr<Edge>> edge_id_map_; | ||||
| std::unordered_map<NodeType, std::unordered_set<FeatureType>> node_feature_map_; | std::unordered_map<NodeType, std::unordered_set<FeatureType>> node_feature_map_; | ||||
| std::unordered_map<NodeType, std::unordered_set<FeatureType>> edge_feature_map_; | |||||
| std::unordered_map<EdgeType, std::unordered_set<FeatureType>> edge_feature_map_; | |||||
| std::unordered_map<FeatureType, std::shared_ptr<Feature>> default_feature_map_; | std::unordered_map<FeatureType, std::shared_ptr<Feature>> default_feature_map_; | ||||
| }; | }; | ||||
| @@ -78,7 +78,7 @@ class GraphData: | |||||
| >>> import mindspore.dataset as ds | >>> import mindspore.dataset as ds | ||||
| >>> data_graph = ds.GraphData('dataset_file', 2) | >>> data_graph = ds.GraphData('dataset_file', 2) | ||||
| >>> nodes = data_graph.get_all_nodes(0) | >>> nodes = data_graph.get_all_nodes(0) | ||||
| >>> neighbors = data_graph.get_all_neighbors(nodes[0], 0) | |||||
| >>> neighbors = data_graph.get_all_neighbors(nodes, 0) | |||||
| Raises: | Raises: | ||||
| TypeError: If `node_list` is not list or ndarray. | TypeError: If `node_list` is not list or ndarray. | ||||
| @@ -102,7 +102,7 @@ class GraphData: | |||||
| >>> import mindspore.dataset as ds | >>> import mindspore.dataset as ds | ||||
| >>> data_graph = ds.GraphData('dataset_file', 2) | >>> data_graph = ds.GraphData('dataset_file', 2) | ||||
| >>> nodes = data_graph.get_all_nodes(0) | >>> nodes = data_graph.get_all_nodes(0) | ||||
| >>> features = data_graph.get_node_feature(nodes[0], [1]) | |||||
| >>> features = data_graph.get_node_feature(nodes, [1]) | |||||
| Raises: | Raises: | ||||
| TypeError: If `node_list` is not list or ndarray. | TypeError: If `node_list` is not list or ndarray. | ||||