| @@ -49,6 +49,7 @@ | |||||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | ||||
| #include "pre_activate/ascend/ir_fusion/remove_reshape_pair.h" | #include "pre_activate/ascend/ir_fusion/remove_reshape_pair.h" | ||||
| #include "pre_activate/ascend/ir_fusion/derelu_fusion.h" | #include "pre_activate/ascend/ir_fusion/derelu_fusion.h" | ||||
| #include "pre_activate/ascend/ir_fusion/batchnorm_to_bninfer.h" | |||||
| #include "pre_activate/ascend/format_type/insert_trans_op.h" | #include "pre_activate/ascend/format_type/insert_trans_op.h" | ||||
| #include "pre_activate/pass/getitem_tuple.h" | #include "pre_activate/pass/getitem_tuple.h" | ||||
| #include "pre_activate/pass/optimize_dependence.h" | #include "pre_activate/pass/optimize_dependence.h" | ||||
| @@ -100,6 +101,7 @@ void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) { | |||||
| ir_fusion_pm->AddPass(std::make_shared<DereluFusion>()); | ir_fusion_pm->AddPass(std::make_shared<DereluFusion>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>()); | ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>()); | ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<BatchNorm2BNInfer>()); | |||||
| } | } | ||||
| } // namespace | } // namespace | ||||
| @@ -0,0 +1,126 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "pre_activate/ascend/ir_fusion/batchnorm_to_bninfer.h" | |||||
| #include <memory> | |||||
| #include <vector> | |||||
| #include "session/anf_runtime_algorithm.h" | |||||
| #include "ir/primitive.h" | |||||
| #include "utils/utils.h" | |||||
| #include "operator/ops.h" | |||||
| #include "pipeline/static_analysis/abstract_value.h" | |||||
| #include "pre_activate/common/helper.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| namespace { | |||||
| CNodePtr CreateBNInfer(const FuncGraphPtr &graph, const CNodePtr &batchnorm, const AnfNodePtr &node) { | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| MS_EXCEPTION_IF_NULL(batchnorm); | |||||
| MS_EXCEPTION_IF_NULL(node); | |||||
| auto prim = std::make_shared<Primitive>(kBNInferOpName); | |||||
| std::vector<AnfNodePtr> inputs = {NewValueNode(prim)}; | |||||
| for (size_t i = 1; i < batchnorm->size(); ++i) { | |||||
| inputs.push_back(batchnorm->input(i)); | |||||
| } | |||||
| auto new_node = graph->NewCNode(inputs); | |||||
| MS_EXCEPTION_IF_NULL(new_node); | |||||
| new_node->set_scope(batchnorm->scope()); | |||||
| new_node->set_abstract(node->abstract()); | |||||
| AnfAlgo::CopyNodeAttr(kAttrIsTraining, batchnorm, new_node); | |||||
| AnfAlgo::CopyNodeAttr(kAttrEpsilon, batchnorm, new_node); | |||||
| return new_node; | |||||
| } | |||||
| bool CheckIndex(const AnfNodePtr &index_node) { | |||||
| MS_EXCEPTION_IF_NULL(index_node); | |||||
| if (!IsValueNode<Int32Imm>(index_node)) { | |||||
| return false; | |||||
| } | |||||
| ValueNodePtr value_node = index_node->cast<ValueNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(value_node); | |||||
| int index = GetValue<int>(value_node->value()); | |||||
| if (index != 0) { | |||||
| MS_LOG(DEBUG) << "tuple_getitem must be 0th output of BatchNorm"; | |||||
| return false; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| bool CheckBatchNorm(const FuncGraphPtr &graph, const CNodePtr &batchnorm) { | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| MS_EXCEPTION_IF_NULL(batchnorm); | |||||
| if (batchnorm->size() < kBatchNormInputNum + 1) { | |||||
| MS_LOG(DEBUG) << "BatchNorm's input less than " << kBatchNormInputNum; | |||||
| return false; | |||||
| } | |||||
| if (!AnfAlgo::HasNodeAttr(kAttrIsTraining, batchnorm)) { | |||||
| return false; | |||||
| } | |||||
| auto is_training = AnfAlgo::GetNodeAttr<bool>(batchnorm, kAttrIsTraining); | |||||
| if (is_training) { | |||||
| MS_LOG(DEBUG) << "is_training is true, no need do fusion"; | |||||
| return false; | |||||
| } | |||||
| if (IsUsedByOthers(graph, batchnorm)) { | |||||
| MS_LOG(DEBUG) << "Only the 0th output of BatchNorm is used, then do fusion"; | |||||
| return false; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| bool NeedFusion(const FuncGraphPtr &graph, const AnfNodePtr &node, CNodePtr *batchnorm) { | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| MS_EXCEPTION_IF_NULL(node); | |||||
| auto tuple_getitem = node->cast<CNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(tuple_getitem); | |||||
| CheckCNodeInputSize(tuple_getitem, kTupleGetItemInputSize); | |||||
| AnfNodePtr index_node = tuple_getitem->input(kInputNodeOutputIndexInTupleGetItem); | |||||
| MS_EXCEPTION_IF_NULL(index_node); | |||||
| if (!CheckIndex(index_node)) { | |||||
| return false; | |||||
| } | |||||
| AnfNodePtr batchnorm_anf = tuple_getitem->input(kRealInputNodeIndexInTupleGetItem); | |||||
| MS_EXCEPTION_IF_NULL(batchnorm_anf); | |||||
| *batchnorm = batchnorm_anf->cast<CNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(*batchnorm); | |||||
| return CheckBatchNorm(graph, *batchnorm); | |||||
| } | |||||
| } // namespace | |||||
| const BaseRef BatchNorm2BNInfer::DefinePattern() const { | |||||
| VarPtr Xs = std::make_shared<SeqVar>(); | |||||
| VarPtr Y = std::make_shared<Var>(); | |||||
| MS_EXCEPTION_IF_NULL(Xs); | |||||
| MS_EXCEPTION_IF_NULL(Y); | |||||
| VectorRef batchnorm({prim::kPrimBatchNorm, Xs}); | |||||
| VectorRef pattern({prim::kPrimTupleGetItem, batchnorm, Y}); | |||||
| return pattern; | |||||
| } | |||||
| const AnfNodePtr BatchNorm2BNInfer::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const { | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| MS_EXCEPTION_IF_NULL(node); | |||||
| CNodePtr batchnorm = nullptr; | |||||
| if (!NeedFusion(graph, node, &batchnorm)) { | |||||
| return nullptr; | |||||
| } | |||||
| return CreateBNInfer(graph, batchnorm, node); | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,33 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_BATCHNORM_TO_BNINFER_H_ | |||||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_BATCHNORM_TO_BNINFER_H_ | |||||
| #include <memory> | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class BatchNorm2BNInfer : public PatternProcessPass { | |||||
| public: | |||||
| explicit BatchNorm2BNInfer(bool multigraph = true) : PatternProcessPass("batchnorm_to_bninfer", multigraph) {} | |||||
| ~BatchNorm2BNInfer() override = default; | |||||
| const BaseRef DefinePattern() const override; | |||||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||||
| }; | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_BATCHNORM_TO_BNINFER_H_ | |||||
| @@ -108,6 +108,7 @@ constexpr auto kLambNextMVOpName = "LambNextMV"; | |||||
| constexpr auto kConfusionTransposeDOpName = "ConfusionTransposeD"; | constexpr auto kConfusionTransposeDOpName = "ConfusionTransposeD"; | ||||
| constexpr auto kAdamApplyOneWithDecayOpName = "AdamApplyOneWithDecay"; | constexpr auto kAdamApplyOneWithDecayOpName = "AdamApplyOneWithDecay"; | ||||
| constexpr auto kBatchNormGradOpName = "BatchNormGrad"; | constexpr auto kBatchNormGradOpName = "BatchNormGrad"; | ||||
| constexpr auto kBNInferOpName = "BNInfer"; | |||||
| constexpr auto kAdamApplyOneOpName = "AdamApplyOne"; | constexpr auto kAdamApplyOneOpName = "AdamApplyOne"; | ||||
| constexpr auto kResizeNearestNeighborGradOpName = "ResizeNearestNeighborGrad"; | constexpr auto kResizeNearestNeighborGradOpName = "ResizeNearestNeighborGrad"; | ||||
| constexpr auto kFusedMulAddOpName = "FusedMulAdd"; | constexpr auto kFusedMulAddOpName = "FusedMulAdd"; | ||||
| @@ -0,0 +1,72 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "common/backend_common_test.h" | |||||
| #include "common/py_func_graph_fetcher.h" | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| #include "pre_activate/ascend/ir_fusion/batchnorm_to_bninfer.h" | |||||
| #include "debug/anf_ir_dump.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class TestHWOptimizeBatchNorm2BNInfer : public BackendCommon { | |||||
| public: | |||||
| TestHWOptimizeBatchNorm2BNInfer() : get_py_fun_("gtest_input.pre_activate.batchnorm_to_bninfer", true) {} | |||||
| ~TestHWOptimizeBatchNorm2BNInfer() override = default; | |||||
| UT::PyFuncGraphFetcher get_py_fun_; | |||||
| }; | |||||
| TEST_F(TestHWOptimizeBatchNorm2BNInfer, test_fusion) { | |||||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batchnorm_to_bninfer", "before"); | |||||
| EXPECT_NE(g, nullptr); | |||||
| std::vector<int> shp_x{32, 64, 112, 112}; | |||||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x); | |||||
| std::vector<int> shp_y{64}; | |||||
| auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y); | |||||
| AbstractBasePtrList args_spec_list{x_abstract, y_abstract, y_abstract, y_abstract, y_abstract}; | |||||
| auto fg = GetKernelGraph(g, args_spec_list); | |||||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||||
| auto pm = std::make_shared<opt::PassManager>(); | |||||
| pm->AddPass(std::make_shared<opt::BatchNorm2BNInfer>()); | |||||
| optimizer->AddPassManager(pm); | |||||
| FuncGraphPtr new_graph = optimizer->Optimize(fg); | |||||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batchnorm_to_bninfer", "after"); | |||||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||||
| } | |||||
| TEST_F(TestHWOptimizeBatchNorm2BNInfer, test_no_fusion) { | |||||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batchnorm_to_bninfer", "no_fusion"); | |||||
| EXPECT_NE(g, nullptr); | |||||
| std::vector<int> shp_x{32, 64, 112, 112}; | |||||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x); | |||||
| std::vector<int> shp_y{64}; | |||||
| auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y); | |||||
| AbstractBasePtrList args_spec_list{x_abstract, y_abstract, y_abstract, y_abstract, y_abstract}; | |||||
| auto fg = GetKernelGraph(g, args_spec_list); | |||||
| auto origin_graph = std::make_shared<session::KernelGraph>(*fg); | |||||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||||
| auto pm = std::make_shared<opt::PassManager>(); | |||||
| pm->AddPass(std::make_shared<opt::BatchNorm2BNInfer>()); | |||||
| optimizer->AddPassManager(pm); | |||||
| FuncGraphPtr new_graph = optimizer->Optimize(fg); | |||||
| EXPECT_TRUE(CheckEqualGraph(origin_graph, new_graph)); | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,56 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import Primitive | |||||
| batch_norm = P.BatchNorm(is_training=False) | |||||
| bn_infer = Primitive('BNInfer') | |||||
| make_tuple = Primitive('make_tuple') | |||||
| tuple_getitem = Primitive('tuple_getitem') | |||||
| class FnDict: | |||||
| def __init__(self): | |||||
| self.fnDict = {} | |||||
| def __call__(self, fn): | |||||
| self.fnDict[fn.__name__] = fn | |||||
| def __getitem__(self, name): | |||||
| return self.fnDict[name] | |||||
| def test_batchnorm_to_bninfer(tag): | |||||
| fns = FnDict() | |||||
| @fns | |||||
| def before(input0, input1, input2, input3, input4): | |||||
| res = batch_norm(input0, input1, input2, input3, input4) | |||||
| res = tuple_getitem(res, 0) | |||||
| return res | |||||
| @fns | |||||
| def after(input0, input1, input2, input3, input4): | |||||
| res = bn_infer(input0, input1, input2, input3, input4) | |||||
| return make_tuple(res) | |||||
| @fns | |||||
| def no_fusion(input0, input1, input2, input3, input4): | |||||
| res = batch_norm(input0, input1, input2, input3, input4) | |||||
| item0 = tuple_getitem(res, 0) | |||||
| item1 = tuple_getitem(res, 1) | |||||
| item2 = tuple_getitem(res, 2) | |||||
| return make_tuple(item0, item1, item2) | |||||
| return fns[tag] | |||||