|
|
|
@@ -2237,11 +2237,11 @@ class DivNoNan(_MathBinaryOp): |
|
|
|
|
|
|
|
class MulNoNan(_MathBinaryOp): |
|
|
|
r""" |
|
|
|
Computes `input_x` * `input_y` element-wise. if `input_y` is zero, No matter what `input_x` is, it will return 0. |
|
|
|
Computes `input_x` * `input_y` element-wise. If `input_y` is zero, no matter what `input_x` is, it will return 0. |
|
|
|
|
|
|
|
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent. |
|
|
|
The inputs must be two tensors or one tensor and one scalar. |
|
|
|
When the inputs are two tensors, the shapes of them could be broadcast. |
|
|
|
When the inputs are two tensors, the shapes of them could be broadcasted. |
|
|
|
When the inputs are one tensor and one scalar, the scalar could only be a constant. |
|
|
|
|
|
|
|
Note: |
|
|
|
@@ -2260,8 +2260,8 @@ class MulNoNan(_MathBinaryOp): |
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` |
|
|
|
|
|
|
|
Raise: |
|
|
|
TypeError: If neither `input_x` nor `input_y` is a bool tensor. |
|
|
|
Raises: |
|
|
|
TypeError: If neither `input_x` nor `input_y` is a bool Tensor. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> x = Tensor(np.array([[-1.0, 6.0, np.inf], [np.nan, -7.0, 4.0]]), ms.float32) |
|
|
|
|