|
|
|
@@ -0,0 +1,59 @@ |
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
class NetElu(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(NetElu, self).__init__() |
|
|
|
self.elu = P.Elu() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
return self.elu(x) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_elu_fp16(): |
|
|
|
x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float16)) |
|
|
|
expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float16) |
|
|
|
error = np.ones(shape=[2, 3]) * 1.0e-6 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") |
|
|
|
elu = NetElu() |
|
|
|
output = elu(x) |
|
|
|
diff = output.asnumpy() - expect |
|
|
|
assert np.all(diff < error) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_elu_fp32(): |
|
|
|
x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float32)) |
|
|
|
expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float32) |
|
|
|
error = np.ones(shape=[2, 3]) * 1.0e-6 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") |
|
|
|
elu = NetElu() |
|
|
|
output = elu(x) |
|
|
|
diff = output.asnumpy() - expect |
|
|
|
assert np.all(diff < error) |