|
|
|
@@ -5187,7 +5187,7 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck): |
|
|
|
- **grad** (Tensor) - A tensor of the same type as `var`, for the gradient. |
|
|
|
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`. |
|
|
|
If there are duplicates in `indices`, the behavior is undefined. Must be one of the |
|
|
|
following types: int16, int32, int64, uint16, uint32, uint64. |
|
|
|
following types: int32, int64. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tuple of 2 tensors, the updated parameters. |
|
|
|
@@ -5253,8 +5253,7 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck): |
|
|
|
validator.check_scalar_or_tensor_types_same({"lr": lr_dtype}, [mstype.float16, mstype.float32], self.name) |
|
|
|
validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, [mstype.float16, mstype.float32], self.name) |
|
|
|
validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, [mstype.float16, mstype.float32], self.name) |
|
|
|
valid_dtypes = [mstype.int16, mstype.int32, mstype.int64, |
|
|
|
mstype.uint16, mstype.uint32, mstype.uint64] |
|
|
|
valid_dtypes = [mstype.int32, mstype.int64] |
|
|
|
validator.check_tensor_dtype_valid('indices', indices_dtype, valid_dtypes, self.name) |
|
|
|
|
|
|
|
|
|
|
|
|