|
|
@@ -43,19 +43,17 @@ if __name__ == "__main__": |
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) |
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) |
|
|
|
|
|
|
|
|
|
|
|
ds_train = create_dataset_mnist(args.data_path, cfg.batch_size, cfg.epoch_size) |
|
|
network = AlexNet(cfg.num_classes) |
|
|
network = AlexNet(cfg.num_classes) |
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") |
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") |
|
|
lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, cfg.save_checkpoint_steps)) |
|
|
|
|
|
|
|
|
lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size())) |
|
|
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) |
|
|
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) |
|
|
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test |
|
|
|
|
|
|
|
|
|
|
|
print("============== Starting Training ==============") |
|
|
|
|
|
ds_train = create_dataset_mnist(args.data_path, |
|
|
|
|
|
cfg.batch_size, |
|
|
|
|
|
cfg.epoch_size) |
|
|
|
|
|
|
|
|
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) |
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) |
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) |
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, |
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, |
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max) |
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max) |
|
|
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) |
|
|
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) |
|
|
|
|
|
|
|
|
|
|
|
print("============== Starting Training ==============") |
|
|
model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], |
|
|
model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], |
|
|
dataset_sink_mode=args.dataset_sink_mode) |
|
|
dataset_sink_mode=args.dataset_sink_mode) |