From: @yuan_shen_zhou Reviewed-by: @liangchenghui,@linqingke Signed-off-by: @liangchenghuitags/v1.1.0
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -133,6 +133,7 @@ class ArrayReduceGpuKernel : public GpuKernel { | |||
| input_size_ = 0; | |||
| output_size_ = 0; | |||
| workspace_size_ = 0; | |||
| axis_.clear(); | |||
| input_size_list_.clear(); | |||
| output_size_list_.clear(); | |||
| workspace_size_list_.clear(); | |||
| @@ -40,8 +40,6 @@ template <typename S> | |||
| __global__ void CheckValidKernel(const size_t size, const unsigned char *box, | |||
| const unsigned char *img_metas, S *valid) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) { | |||
| const size_t left_x = i * 4; | |||
| const size_t left_y = i * 4 + 1; | |||
| const size_t right_x = i * 4 + 2; | |||
| const size_t right_y = i * 4 + 3; | |||
| @@ -43,14 +43,7 @@ const std::map<std::string, NcclKernelType> kNcclTypeMap = { | |||
| template <typename T> | |||
| class NcclCollectiveGpuKernel : public NcclGpuKernel { | |||
| public: | |||
| NcclCollectiveGpuKernel() | |||
| : nccl_kernel_type_(NCCL_INVALID_TYPE), | |||
| nccl_reduce_type_(ncclSum), | |||
| input_size_(0), | |||
| output_size_(0), | |||
| root_(0), | |||
| collective_handle_(nullptr), | |||
| comm_stream_(nullptr) {} | |||
| NcclCollectiveGpuKernel() { ResetResource(); } | |||
| ~NcclCollectiveGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| @@ -82,6 +75,7 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel { | |||
| } | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| nccl_data_type_ = nccl_dtype(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)); | |||
| InferCommType(kernel_node); | |||
| @@ -89,7 +83,7 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| for (size_t i = 0; i < input_num; ++i) { | |||
| auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i); | |||
| auto shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, i); | |||
| size_t size = sizeof(T); | |||
| for (size_t j = 0; j < shape.size(); j++) { | |||
| size *= IntToSize(shape[j]); | |||
| @@ -99,7 +93,7 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel { | |||
| input_size_ += aligned_size; | |||
| } | |||
| for (size_t i = 0; i < output_num; ++i) { | |||
| auto shape = AnfAlgo::GetOutputInferShape(kernel_node, i); | |||
| auto shape = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, i); | |||
| size_t size = sizeof(T); | |||
| for (size_t j = 0; j < shape.size(); j++) { | |||
| size *= IntToSize(shape[j]); | |||
| @@ -122,6 +116,19 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel { | |||
| return true; | |||
| } | |||
| void ResetResource() noexcept override { | |||
| nccl_kernel_type_ = NCCL_INVALID_TYPE; | |||
| nccl_reduce_type_ = ncclSum; | |||
| input_size_ = 0; | |||
| output_size_ = 0; | |||
| root_ = 0; | |||
| collective_handle_ = nullptr; | |||
| comm_stream_ = nullptr; | |||
| input_size_list_.clear(); | |||
| output_size_list_.clear(); | |||
| workspace_size_list_.clear(); | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { return; } | |||
| @@ -43,8 +43,8 @@ const AnfNodePtr ConvertConstInputToAttr::Process(const FuncGraphPtr &, const An | |||
| todos.push_back(node); | |||
| } | |||
| std::set<string> DynamicShapeConstInputToAttr = {kCastOpName, kExpandDimsOpName, kReshapeOpName, | |||
| kEmbeddingLookupOpName, kTransposeOpName}; | |||
| std::set<string> DynamicShapeConstInputToAttr = { | |||
| kCastOpName, kExpandDimsOpName, kReshapeOpName, kEmbeddingLookupOpName, kTransposeOpName, kReduceSumOpName}; | |||
| for (auto &t : todos) { | |||
| CNodePtr cnode = t->cast<CNodePtr>(); | |||
| ConstInputToAttrInfoRegister reg; | |||
| @@ -253,6 +253,8 @@ AbstractBasePtr InferImplSub(const AnalysisEnginePtr &, const PrimitivePtr &prim | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplEqual(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplReduceSum(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplCast(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplMinimum(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -121,6 +121,94 @@ AbstractBasePtr InferImplEqual(const AnalysisEnginePtr &, const PrimitivePtr &pr | |||
| return ret; | |||
| } | |||
| AbstractBasePtr InferImplReduceSum(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| const std::string op_name = primitive->name(); | |||
| CheckArgsSize(op_name, args_spec_list, 1); | |||
| auto input_x = CheckArg<AbstractTensor>(op_name, args_spec_list, 0); | |||
| MS_EXCEPTION_IF_NULL(input_x); | |||
| MS_EXCEPTION_IF_NULL(input_x->element()); | |||
| ValuePtr keep_dims = primitive->GetAttr("keep_dims"); | |||
| MS_EXCEPTION_IF_NULL(keep_dims); | |||
| if (!keep_dims->isa<BoolImm>()) { | |||
| MS_LOG(EXCEPTION) << "Keep_dims should be Bool."; | |||
| } | |||
| bool keep_dims_value = GetValue<bool>(keep_dims); | |||
| ValuePtr axis = primitive->GetAttr("axis"); | |||
| MS_EXCEPTION_IF_NULL(axis); | |||
| auto check_axis = [](int64_t &axis, const size_t dim) -> void { | |||
| int64_t dim_ = static_cast<int64_t>(dim); | |||
| if (axis < -dim_ || axis >= dim_) { | |||
| MS_LOG(EXCEPTION) << "axis should be in [" << -dim_ << ", " << dim_ << "). But got axis = " << axis; | |||
| } | |||
| if (axis >= -dim_ && axis < 0) { | |||
| axis += dim_; | |||
| } | |||
| return; | |||
| }; | |||
| auto cal_shape = [axis, keep_dims_value, check_axis](ShapeVector &shape, const ShapeVector &x_shape) -> void { | |||
| if (axis->isa<ValueTuple>() || axis->isa<ValueList>()) { | |||
| auto axis_ptr_list = | |||
| axis->isa<ValueTuple>() ? axis->cast<ValueTuplePtr>()->value() : axis->cast<ValueListPtr>()->value(); | |||
| if (!axis_ptr_list.size()) { | |||
| if (keep_dims_value) shape.insert(shape.end(), x_shape.size(), 1); | |||
| } else { | |||
| shape.insert(shape.end(), x_shape.begin(), x_shape.end()); | |||
| ValuePtrList axis_items = axis_ptr_list; | |||
| ValuePtrList::iterator it; | |||
| ValuePtrList::reverse_iterator it_re; | |||
| int64_t axis_value; | |||
| if (keep_dims_value) { | |||
| for (it = axis_items.begin(); it != axis_items.end(); ++it) { | |||
| axis_value = GetValue<int64_t>(*it); | |||
| check_axis(axis_value, x_shape.size()); | |||
| shape[axis_value] = 1; | |||
| } | |||
| } else { | |||
| std::sort(axis_items.begin(), axis_items.end()); | |||
| for (it_re = axis_items.rbegin(); it_re != axis_items.rend(); ++it_re) { | |||
| axis_value = GetValue<int64_t>(*it_re); | |||
| check_axis(axis_value, x_shape.size()); | |||
| shape.erase(std::begin(shape) + axis_value); | |||
| } | |||
| } | |||
| } | |||
| } else if (axis->isa<Int32Imm>() || axis->isa<Int64Imm>()) { | |||
| shape.insert(shape.end(), x_shape.begin(), x_shape.end()); | |||
| int64_t axis_value = GetValue<int64_t>(axis); | |||
| check_axis(axis_value, x_shape.size()); | |||
| if (keep_dims_value) { | |||
| shape[axis_value] = 1; | |||
| } else { | |||
| shape.erase(std::begin(shape) + axis_value); | |||
| } | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "Axis should be one of types: [int/tuple/list]."; | |||
| } | |||
| return; | |||
| }; | |||
| ShapeVector shape = {}; | |||
| ShapeVector x_shape = input_x->shape()->shape(); | |||
| cal_shape(shape, x_shape); | |||
| bool x_is_dyn = (!input_x->shape()->min_shape().empty() && !input_x->shape()->max_shape().empty()); | |||
| if (x_is_dyn) { | |||
| ShapeVector shape_min = {}; | |||
| ShapeVector shape_max = {}; | |||
| ShapeVector x_shape_min = input_x->shape()->min_shape(); | |||
| ShapeVector x_shape_max = input_x->shape()->max_shape(); | |||
| cal_shape(shape_min, x_shape_min); | |||
| cal_shape(shape_max, x_shape_max); | |||
| return std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape, shape_min, shape_max)); | |||
| } | |||
| return std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape)); | |||
| } | |||
| AbstractBasePtr InferImplBinaryBase(const AnalysisEnginePtr &engine_ptr, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| const std::string op_name = primitive->name(); | |||
| @@ -44,6 +44,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() { | |||
| {prim::kPrimSqrtGrad, {InferImplSqrtGrad, true}}, | |||
| {prim::kPrimSub, {InferImplSub, true}}, | |||
| {prim::kPrimEqual, {InferImplEqual, true}}, | |||
| {prim::kPrimReduceSum, {InferImplReduceSum, true}}, | |||
| {prim::kPrimMinimum, {InferImplMinimum, true}}, | |||
| {prim::kPrimDivNoNan, {InferImplDivNoNan, true}}, | |||
| {prim::kPrimLinSpace, {InferImplLinSpace, true}}, | |||
| @@ -320,7 +320,16 @@ class _Reduce(PrimitiveWithInfer): | |||
| value = np_reduce_func(value, axis_v, keepdims=self.keep_dims) | |||
| value = np.array(value) | |||
| value = Tensor(value) | |||
| if 'max_shape' and 'min_shape' in input_x: | |||
| output_max_shape = _infer_shape_reduce(input_x['max_shape'], axis_v, self.keep_dims, self.name) | |||
| output_min_shape = _infer_shape_reduce(input_x['min_shape'], axis_v, self.keep_dims, self.name) | |||
| else: | |||
| output_max_shape = input_shp | |||
| output_min_shape = input_shp | |||
| return {'shape': input_shp, | |||
| 'min_shape': output_min_shape, | |||
| 'max_shape': output_max_shape, | |||
| 'dtype': input_x['dtype'], | |||
| 'value': value} | |||