|
|
@@ -0,0 +1,197 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
# ============================================================================ |
|
|
|
|
|
"""image""" |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
from mindspore.ops import functional as F |
|
|
|
|
|
from mindspore.ops.primitive import constexpr |
|
|
|
|
|
from mindspore._checkparam import ParamValidator as validator |
|
|
|
|
|
from mindspore._checkparam import Rel |
|
|
|
|
|
from ..cell import Cell |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ImageGradients(Cell): |
|
|
|
|
|
r""" |
|
|
|
|
|
Returns two tensors, the first is along the height dimension and the second is along the width dimension. |
|
|
|
|
|
|
|
|
|
|
|
Assume an image shape is :math:`h*w`. The gradients along the height and the width are :math:`dy` and :math:`dx`, |
|
|
|
|
|
respectively. |
|
|
|
|
|
|
|
|
|
|
|
.. math:: |
|
|
|
|
|
dy[i] = \begin{cases} image[i+1, :]-image[i, :], &if\ 0<=i<h-1 \cr |
|
|
|
|
|
0, &if\ i==h-1\end{cases} |
|
|
|
|
|
|
|
|
|
|
|
dx[i] = \begin{cases} image[:, i+1]-image[:, i], &if\ 0<=i<w-1 \cr |
|
|
|
|
|
0, &if\ i==w-1\end{cases} |
|
|
|
|
|
|
|
|
|
|
|
Inputs: |
|
|
|
|
|
- **images** (Tensor) - The input image data, with format 'NCHW'. |
|
|
|
|
|
|
|
|
|
|
|
Outputs: |
|
|
|
|
|
- **dy** (Tensor) - vertical image gradients, the same type and shape as input. |
|
|
|
|
|
- **dx** (Tensor) - horizontal image gradients, the same type and shape as input. |
|
|
|
|
|
|
|
|
|
|
|
Examples: |
|
|
|
|
|
>>> net = nn.ImageGradients() |
|
|
|
|
|
>>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32) |
|
|
|
|
|
>>> net(image) |
|
|
|
|
|
[[[[2,2] |
|
|
|
|
|
[0,0]]]] |
|
|
|
|
|
[[[[1,0] |
|
|
|
|
|
[1,0]]]] |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super(ImageGradients, self).__init__() |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, images): |
|
|
|
|
|
batch_size, depth, height, width = P.Shape()(images) |
|
|
|
|
|
dy = images[:, :, 1:, :] - images[:, :, :height - 1, :] |
|
|
|
|
|
dy_last = P.Fill()(P.DType()(images), (batch_size, depth, 1, width), 0) |
|
|
|
|
|
dy = P.Concat(2)((dy, dy_last)) |
|
|
|
|
|
|
|
|
|
|
|
dx = images[:, :, :, 1:] - images[:, :, :, :width - 1] |
|
|
|
|
|
dx_last = P.Fill()(P.DType()(images), (batch_size, depth, height, 1), 0) |
|
|
|
|
|
dx = P.Concat(3)((dx, dx_last)) |
|
|
|
|
|
return dy, dx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@constexpr |
|
|
|
|
|
def _gauss_kernel_helper(filter_size): |
|
|
|
|
|
"""gauss kernel helper""" |
|
|
|
|
|
filter_size = F.scalar_cast(filter_size, mstype.int32) |
|
|
|
|
|
coords = () |
|
|
|
|
|
for i in range(filter_size): |
|
|
|
|
|
i_cast = F.scalar_cast(i, mstype.float32) |
|
|
|
|
|
offset = F.scalar_cast(filter_size-1, mstype.float32)/2.0 |
|
|
|
|
|
element = i_cast-offset |
|
|
|
|
|
coords = coords+(element,) |
|
|
|
|
|
g = np.square(coords).astype(np.float32) |
|
|
|
|
|
g = Tensor(g) |
|
|
|
|
|
return filter_size, g |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SSIM(Cell): |
|
|
|
|
|
r""" |
|
|
|
|
|
Returns SSIM index between img1 and img2. |
|
|
|
|
|
|
|
|
|
|
|
Its implementation is based on Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). `Image quality |
|
|
|
|
|
assessment: from error visibility to structural similarity <https://ieeexplore.ieee.org/document/1284395>`_. |
|
|
|
|
|
IEEE transactions on image processing. |
|
|
|
|
|
|
|
|
|
|
|
.. math:: |
|
|
|
|
|
|
|
|
|
|
|
l(x,y)&=\frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1}, C_1=(K_1L)^2.\\ |
|
|
|
|
|
c(x,y)&=\frac{2\sigma_x\sigma_y+C_2}{\sigma_x^2+\sigma_y^2+C_2}, C_2=(K_2L)^2.\\ |
|
|
|
|
|
s(x,y)&=\frac{\sigma_{xy}+C_3}{\sigma_x\sigma_y+C_3}, C_3=C_2/2.\\ |
|
|
|
|
|
SSIM(x,y)&=l*c*s\\&=\frac{(2\mu_x\mu_y+C_1)(2\sigma_{xy}+C_2}{(\mu_x^2+\mu_y^2+C_1)(\sigma_x^2+\sigma_y^2+C_2)}. |
|
|
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
|
max_val (Union[int, float]): The dynamic range of the pixel values (255 for 8-bit grayscale images). |
|
|
|
|
|
Default: 1.0. |
|
|
|
|
|
filter_size (int): The size of the Gaussian filter. Default: 11. |
|
|
|
|
|
filter_sigma (float): The standard deviation of Gaussian kernel. Default: 1.5. |
|
|
|
|
|
k1 (float): The constant used to generate c1 in the luminance comparison function. Default: 0.01. |
|
|
|
|
|
k2 (float): The constant used to generate c2 in the contrast comparison function. Default: 0.03. |
|
|
|
|
|
|
|
|
|
|
|
Inputs: |
|
|
|
|
|
- **img1** (Tensor) - The first image batch with format 'NCHW'. It should be the same shape and dtype as img2. |
|
|
|
|
|
- **img2** (Tensor) - The second image batch with format 'NCHW'. It should be the same shape and dtype as img1. |
|
|
|
|
|
|
|
|
|
|
|
Outputs: |
|
|
|
|
|
Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1. |
|
|
|
|
|
|
|
|
|
|
|
Examples: |
|
|
|
|
|
>>> net = nn.SSIM() |
|
|
|
|
|
>>> img1 = Tensor(np.random.random((1,3,16,16))) |
|
|
|
|
|
>>> img2 = Tensor(np.random.random((1,3,16,16))) |
|
|
|
|
|
>>> ssim = net(img1, img2) |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03): |
|
|
|
|
|
super(SSIM, self).__init__() |
|
|
|
|
|
validator.check_type('max_val', max_val, [int, float]) |
|
|
|
|
|
validator.check('max_val', max_val, '', 0.0, Rel.GT) |
|
|
|
|
|
self.max_val = max_val |
|
|
|
|
|
self.filter_size = validator.check_integer('filter_size', filter_size, 1, Rel.GE) |
|
|
|
|
|
self.filter_sigma = validator.check_float_positive('filter_sigma', filter_sigma) |
|
|
|
|
|
validator.check_type('k1', k1, [float]) |
|
|
|
|
|
self.k1 = validator.check_number_range('k1', k1, 0.0, 1.0, Rel.INC_NEITHER) |
|
|
|
|
|
validator.check_type('k2', k2, [float]) |
|
|
|
|
|
self.k2 = validator.check_number_range('k2', k2, 0.0, 1.0, Rel.INC_NEITHER) |
|
|
|
|
|
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, img1, img2): |
|
|
|
|
|
max_val = self._convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
|
|
img1 = self._convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
|
|
img2 = self._convert_img_dtype_to_float32(img2, self.max_val) |
|
|
|
|
|
|
|
|
|
|
|
kernel = self._fspecial_gauss(self.filter_size, self.filter_sigma) |
|
|
|
|
|
kernel = P.Tile()(kernel, (1, P.Shape()(img1)[1], 1, 1)) |
|
|
|
|
|
|
|
|
|
|
|
mean_ssim = self._calculate_mean_ssim(img1, img2, kernel, max_val, self.k1, self.k2) |
|
|
|
|
|
|
|
|
|
|
|
return mean_ssim |
|
|
|
|
|
|
|
|
|
|
|
def _convert_img_dtype_to_float32(self, img, max_val): |
|
|
|
|
|
"""convert img dtype to float32""" |
|
|
|
|
|
# Ususally max_val is 1.0 or 255, we will do the scaling if max_val > 1. |
|
|
|
|
|
# We will scale img pixel value if max_val > 1. and just cast otherwise. |
|
|
|
|
|
ret = P.Cast()(img, mstype.float32) |
|
|
|
|
|
max_val = F.scalar_cast(max_val, mstype.float32) |
|
|
|
|
|
if max_val > 1.: |
|
|
|
|
|
scale = 1./max_val |
|
|
|
|
|
ret = ret*scale |
|
|
|
|
|
return ret |
|
|
|
|
|
|
|
|
|
|
|
def _calculate_mean_ssim(self, x, y, kernel, max_val, k1, k2): |
|
|
|
|
|
"""calculate mean ssim""" |
|
|
|
|
|
c1 = (k1*max_val)*(k1*max_val) |
|
|
|
|
|
c2 = (k2*max_val)*(k2*max_val) |
|
|
|
|
|
|
|
|
|
|
|
# SSIM luminance formula |
|
|
|
|
|
# (2 * mean_{x} * mean_{y} + c1) / (mean_{x}**2 + mean_{y}**2 + c1) |
|
|
|
|
|
mean_x = self.mean(x, kernel) |
|
|
|
|
|
mean_y = self.mean(y, kernel) |
|
|
|
|
|
square_sum = F.square(mean_x)+F.square(mean_y) |
|
|
|
|
|
luminance = (2*mean_x*mean_y+c1)/(square_sum+c1) |
|
|
|
|
|
|
|
|
|
|
|
# SSIM contrast*structure formula (when c3 = c2/2) |
|
|
|
|
|
# (2 * conv_{xy} + c2) / (conv_{xx} + conv_{yy} + c2), equals to |
|
|
|
|
|
# (2 * (mean_{xy} - mean_{x}*mean_{y}) + c2) / (mean_{xx}-mean_{x}**2 + mean_{yy}-mean_{y}**2 + c2) |
|
|
|
|
|
mean_xy = self.mean(x*y, kernel) |
|
|
|
|
|
mean_square_add = self.mean(F.square(x)+F.square(y), kernel) |
|
|
|
|
|
|
|
|
|
|
|
cs = (2*(mean_xy-mean_x*mean_y)+c2)/(mean_square_add-square_sum+c2) |
|
|
|
|
|
|
|
|
|
|
|
# SSIM formula |
|
|
|
|
|
# luminance * cs |
|
|
|
|
|
ssim = luminance*cs |
|
|
|
|
|
|
|
|
|
|
|
mean_ssim = P.ReduceMean()(ssim, (-3, -2, -1)) |
|
|
|
|
|
|
|
|
|
|
|
return mean_ssim |
|
|
|
|
|
|
|
|
|
|
|
def _fspecial_gauss(self, filter_size, filter_sigma): |
|
|
|
|
|
"""get gauss kernel""" |
|
|
|
|
|
filter_size, g = _gauss_kernel_helper(filter_size) |
|
|
|
|
|
|
|
|
|
|
|
square_sigma_scale = -0.5/(filter_sigma * filter_sigma) |
|
|
|
|
|
g = g*square_sigma_scale |
|
|
|
|
|
g = F.reshape(g, (1, -1))+F.reshape(g, (-1, 1)) |
|
|
|
|
|
g = F.reshape(g, (1, -1)) |
|
|
|
|
|
g = P.Softmax()(g) |
|
|
|
|
|
ret = F.reshape(g, (1, 1, filter_size, filter_size)) |
|
|
|
|
|
return ret |