| @@ -19,6 +19,8 @@ from .embedding_lookup import _embedding_lookup_aicpu | |||
| from .padding import _padding_aicpu | |||
| from .gather import _gather_aicpu | |||
| from .identity import _identity_aicpu | |||
| from .edit_distance import _edit_distance_aicpu | |||
| from .unique_with_pad import _unique_with_pad_aicpu | |||
| from .dropout_genmask import _dropout_genmask_aicpu | |||
| from .get_next import _get_next_aicpu | |||
| from .print_tensor import _print_aicpu | |||
| @@ -56,3 +58,4 @@ from .fused_sparse_lazy_adam import _fused_sparse_lazy_adam_aicpu | |||
| from .fused_sparse_ftrl import _fused_sparse_ftrl_aicpu | |||
| from .fused_sparse_proximal_adagrad import _fused_sparse_proximal_adagrad_aicpu | |||
| from .meshgrid import _meshgrid_aicpu | |||
| from .trans_data import _trans_data_aicpu | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """EditDistance op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| edit_distance_op_info = AiCPURegOp("EditDistance") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "hypothesis_indices", "required") \ | |||
| .input(1, "hypothesis_values", "required") \ | |||
| .input(2, "hypothesis_shape", "required") \ | |||
| .input(3, "truth_indices", "required") \ | |||
| .input(4, "truth_values", "required") \ | |||
| .input(5, "truth_shape", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .attr("normalize", "bool") \ | |||
| .dtype_format(DataType.I64_Default, DataType.I8_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.I8_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I16_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.I16_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.I32_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.U8_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.U8_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.U16_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.U16_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.U32_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.U32_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.U64_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.U64_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.F16_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.F16_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.F32_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.F32_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .dtype_format(DataType.I64_Default, DataType.F64_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.F64_Default, DataType.I64_Default, DataType.F32_Default,) \ | |||
| .get_op_info() | |||
| @op_info_register(edit_distance_op_info) | |||
| def _edit_distance_aicpu(): | |||
| """EditDistance AiCPU register""" | |||
| return | |||
| @@ -0,0 +1,34 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """TransData op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| trans_data_op_info = AiCPURegOp("TransData") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "src", "required") \ | |||
| .output(0, "dst", "required") \ | |||
| .attr("src_format", "str") \ | |||
| .attr("dst_format", "str") \ | |||
| .dtype_format(DataType.U16_NCHW, DataType.U16_5HD) \ | |||
| .dtype_format(DataType.U16_5HD, DataType.U16_NCHW) \ | |||
| .dtype_format(DataType.U16_Default, DataType.U16_5HD) \ | |||
| .dtype_format(DataType.U16_5HD, DataType.U16_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(trans_data_op_info) | |||
| def _trans_data_aicpu(): | |||
| """TransData aicpu register""" | |||
| return | |||
| @@ -0,0 +1,32 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """UniqueWithPad op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| unique_with_pad_op_info = AiCPURegOp("UniqueWithPad") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x", "required") \ | |||
| .input(1, "pad_num", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .output(1, "idx", "required") \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(unique_with_pad_op_info) | |||
| def _unique_with_pad_aicpu(): | |||
| """UniqueWithPad AiCPU register""" | |||
| return | |||
| @@ -27,7 +27,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack, | |||
| Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue, Meshgrid, | |||
| SameTypeShape, ScatterAdd, ScatterSub, ScatterMul, ScatterDiv, ScatterMax, ScatterMin, | |||
| ScatterUpdate, ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select, | |||
| Shape, DynamicShape, Size, Slice, Split, TransShape, ParallelConcat, Padding, | |||
| Shape, DynamicShape, Size, Slice, Split, TransShape, ParallelConcat, Padding, UniqueWithPad, | |||
| ScatterNdAdd, ScatterNdSub, ScatterNonAliasingAdd, ReverseV2, Rint, | |||
| Squeeze, StridedSlice, Tile, TensorScatterUpdate, EditDistance, Sort, | |||
| Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentProd, | |||
| @@ -156,6 +156,7 @@ __all__ = [ | |||
| 'Padding', | |||
| 'GatherD', | |||
| 'Identity', | |||
| 'UniqueWithPad', | |||
| 'Concat', | |||
| 'Pack', | |||
| 'Unpack', | |||
| @@ -747,6 +747,41 @@ class Padding(PrimitiveWithInfer): | |||
| return out | |||
| class UniqueWithPad(PrimitiveWithInfer): | |||
| """ | |||
| Return unique elements and relative indexes in 1-D tensor, fill with pad num. | |||
| Inputs: | |||
| - **x** (Tensor) - The tensor need to be unique. Must be 1-D vector with types: int32, int64. | |||
| - **pad_num** (int) - Pad num. | |||
| Outputs: | |||
| tuple(Tensor), tuple of 2 tensors, y and idx. | |||
| - y (Tensor) - The unique elements filled with pad_num, the shape and type same as x. | |||
| - idx (Tensor) - The index of each value of x in the unique output y, the shape and type same as x. | |||
| Examples: | |||
| >>> x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2,]), mindspore.int32) | |||
| >>> pad_num = 8 | |||
| >>> out = P.UniqueWithPad()(x, pad_num) | |||
| ([1, 5, 4, 3, 2, 8, 8, 8, 8, 8], [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init UniqueWithPad""" | |||
| def __infer__(self, x, pad_num): | |||
| validator.check_tensor_type_same({"x": x['dtype']}, [mstype.int32, mstype.int64], self.name) | |||
| validator.check_subclass("pad_num", pad_num['dtype'], [mstype.int32, mstype.int64], self.name) | |||
| x_shape = list(x['shape']) | |||
| validator.check("rank of x", len(x_shape), "expected", 1, Rel.EQ, self.name) | |||
| out_shape = x_shape | |||
| out = {'shape': (out_shape, out_shape), | |||
| 'dtype': (x['dtype'], x['dtype']), | |||
| 'value': None} | |||
| return out | |||
| class Split(PrimitiveWithInfer): | |||
| """ | |||
| Splits input tensor into output_num of tensors along the given axis and output numbers. | |||
| @@ -0,0 +1,48 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="Ascend") | |||
| class EditDistance(nn.Cell): | |||
| def __init__(self, hypothesis_shape, truth_shape, normalize=True): | |||
| super(EditDistance, self).__init__() | |||
| self.edit_distance = P.EditDistance(normalize) | |||
| self.hypothesis_shape = hypothesis_shape | |||
| self.truth_shape = truth_shape | |||
| def construct(self, hypothesis_indices, hypothesis_values, truth_indices, truth_values): | |||
| return self.edit_distance(hypothesis_indices, hypothesis_values, self.hypothesis_shape, | |||
| truth_indices, truth_values, self.truth_shape) | |||
| def test_edit_distance(): | |||
| h1, h2, h3 = np.array([[0, 0, 0], [1, 0, 1], [1, 1, 1]]), np.array([1, 2, 3]), np.array([2, 2, 2]) | |||
| t1, t2, t3 = np.array([[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]]), np.array([1, 2, 3, 1]), np.array([2, 2, 2]) | |||
| hypothesis_indices = Tensor(h1.astype(np.int64)) | |||
| hypothesis_values = Tensor(h2.astype(np.int64)) | |||
| hypothesis_shape = Tensor(h3.astype(np.int64)) | |||
| truth_indices = Tensor(t1.astype(np.int64)) | |||
| truth_values = Tensor(t2.astype(np.int64)) | |||
| truth_shape = Tensor(t3.astype(np.int64)) | |||
| edit_distance = EditDistance(hypothesis_shape, truth_shape) | |||
| out = edit_distance(hypothesis_indices, hypothesis_values, truth_indices, truth_values) | |||
| print(out) | |||
| @@ -0,0 +1,44 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, pad_num): | |||
| super(Net, self).__init__() | |||
| self.unique_with_pad = P.UniqueWithPad() | |||
| self.pad_num = pad_num | |||
| def construct(self, x): | |||
| return self.unique_with_pad(x, self.pad_num) | |||
| def test_unique_with_pad(): | |||
| x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2]), mstype.int32) | |||
| pad_num = 8 | |||
| unique_with_pad = Net(pad_num) | |||
| out = unique_with_pad(x) | |||
| expect_val = ([1, 5, 4, 3, 2, 8, 8, 8, 8, 8], [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) | |||
| assert(out[0].asnumpy() == expect_val[0]).all() | |||
| assert(out[1].asnumpy() == expect_val[1]).all() | |||