| @@ -938,6 +938,19 @@ def get_bprop_asin(self): | |||
| return bprop | |||
| @bprop_getters.register(G.AsinGrad) | |||
| def get_bprop_asin_grad(self): | |||
| """Grad definition for `AsinGrad` operation.""" | |||
| input_grad = G.AsinGrad() | |||
| p_pow = P.Pow() | |||
| def bprop(x, grad, out, dout): | |||
| d2x = dout * grad * x * p_pow((1 - x * x), - 1.5) | |||
| ddy = input_grad(x, dout) | |||
| return (d2x, ddy) | |||
| return bprop | |||
| @bprop_getters.register(P.Asinh) | |||
| def get_bprop_asinh(self): | |||
| """Grad definition for `Asinh` operation.""" | |||
| @@ -986,6 +999,21 @@ def get_bprop_acos(self): | |||
| return bprop | |||
| @bprop_getters.register(G.ACosGrad) | |||
| def get_bprop_acos_grad(self): | |||
| """Grad definition for `ACosGrad` operation.""" | |||
| input_grad = G.ACosGrad() | |||
| p_pow = P.Pow() | |||
| def bprop(x, grad, out, dout): | |||
| d2x = -dout * grad * x * p_pow((1 - x * x), - 1.5) | |||
| ddy = input_grad(x, dout) | |||
| return (d2x, ddy) | |||
| return bprop | |||
| @bprop_getters.register(P.Acosh) | |||
| def get_bprop_acosh(self): | |||
| """Grad definition for `Acosh` operation.""" | |||
| @@ -0,0 +1,73 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| from mindspore.ops.composite import GradOperation | |||
| class NetAcosGrad(nn.Cell): | |||
| def __init__(self): | |||
| super(NetAcosGrad, self).__init__() | |||
| self.acos_grad = G.ACosGrad() | |||
| @ms_function | |||
| def construct(self, x, dy): | |||
| return self.acos_grad(x, dy) | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||
| self.network = network | |||
| @ms_function | |||
| def construct(self, x, grad, dout): | |||
| return self.grad(self.network)(x, grad, dout) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| @pytest.mark.parametrize("fp_type, error_magnitude, mode", [ | |||
| (np.float16, 1.0e-3, context.PYNATIVE_MODE), | |||
| (np.float32, 1.0e-6, context.PYNATIVE_MODE), | |||
| (np.float16, 1.0e-3, context.GRAPH_MODE), | |||
| (np.float32, 1.0e-6, context.GRAPH_MODE) | |||
| ]) | |||
| def test_acos_grad_grad(fp_type, error_magnitude, mode): | |||
| x = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type)) | |||
| grad = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type)) | |||
| dout = Tensor(np.array([2, 2, 2, 2]).astype(fp_type)) | |||
| expect_ddy = np.array([-2, -2.0655911, -2.3094011, -2.0965697]).astype(fp_type) | |||
| expect_d2x = np.array([0, -0.1377061, -0.7698004, -0.2073530]).astype(fp_type) | |||
| error = np.ones(4) * error_magnitude | |||
| context.set_context(mode=mode, device_target="GPU") | |||
| acos_grad_grad = Grad(NetAcosGrad()) | |||
| d2x, ddy = acos_grad_grad(x, grad, dout) | |||
| diff0 = ddy.asnumpy() - expect_ddy | |||
| diff1 = d2x.asnumpy() - expect_d2x | |||
| assert np.all(abs(diff0) < error) | |||
| assert np.all(abs(diff1) < error) | |||
| @@ -0,0 +1,73 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| from mindspore.ops.composite import GradOperation | |||
| class NetAsinGrad(nn.Cell): | |||
| def __init__(self): | |||
| super(NetAsinGrad, self).__init__() | |||
| self.asin_grad = G.AsinGrad() | |||
| @ms_function | |||
| def construct(self, x, dy): | |||
| return self.asin_grad(x, dy) | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||
| self.network = network | |||
| @ms_function | |||
| def construct(self, x, grad, dout): | |||
| return self.grad(self.network)(x, grad, dout) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| @pytest.mark.parametrize("fp_type, error_magnitude, mode", [ | |||
| (np.float16, 1.0e-3, context.PYNATIVE_MODE), | |||
| (np.float32, 1.0e-6, context.PYNATIVE_MODE), | |||
| (np.float16, 1.0e-3, context.GRAPH_MODE), | |||
| (np.float32, 1.0e-6, context.GRAPH_MODE) | |||
| ]) | |||
| def test_asin_grad_grad(fp_type, error_magnitude, mode): | |||
| x = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type)) | |||
| grad = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type)) | |||
| dout = Tensor(np.array([2, 2, 2, 2]).astype(fp_type)) | |||
| expect_ddy = np.array([2, 2.0655911, 2.3094011, 2.0965697]).astype(fp_type) | |||
| expect_d2x = np.array([0, 0.1377061, 0.7698004, 0.2073530]).astype(fp_type) | |||
| error = np.ones(4) * error_magnitude | |||
| context.set_context(mode=mode, device_target="GPU") | |||
| asin_grad_grad = Grad(NetAsinGrad()) | |||
| d2x, ddy = asin_grad_grad(x, grad, dout) | |||
| diff0 = ddy.asnumpy() - expect_ddy | |||
| diff1 = d2x.asnumpy() - expect_d2x | |||
| assert np.all(abs(diff0) < error) | |||
| assert np.all(abs(diff1) < error) | |||