Merge pull request !2801 from chenzhongming/quant_scripttags/v0.6.0-beta
| @@ -30,7 +30,7 @@ run_ascend() | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | BASEPATH=$(cd "`dirname $0`" || exit; pwd) | ||||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | export PYTHONPATH=${BASEPATH}:$PYTHONPATH | ||||
| if [ -d "train" ]; | |||||
| if [ -d "../train" ]; | |||||
| then | then | ||||
| rm -rf ../train | rm -rf ../train | ||||
| fi | fi | ||||
| @@ -0,0 +1,142 @@ | |||||
| # MobileNetV2 Quantization Aware Training | |||||
| MobileNetV2 is a significant improvement over MobileNetV1 and pushes the state of the art for mobile visual recognition including classification, object detection and semantic segmentation. | |||||
| MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable convolution as efficient building blocks. However, V2 introduces two new features to the architecture: 1) linear bottlenecks between the layers, and 2) shortcut connections between the bottlenecks1. | |||||
| Training MobileNetV2 with ImageNet dataset in MindSpore with quantization aware training. | |||||
| This is the simple and basic tutorial for constructing a network in MindSpore with quantization aware. | |||||
| In this readme tutorial, you will: | |||||
| 1. Train a MindSpore fusion MobileNetV2 model for ImageNet from scratch using `nn.Conv2dBnAct` and `nn.DenseBnAct`. | |||||
| 2. Fine tune the fusion model by applying the quantization aware training auto network converter API `convert_quant_network`, after the network convergence then export a quantization aware model checkpoint file. | |||||
| [Paper](https://arxiv.org/pdf/1801.04381) Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. | |||||
| # Dataset | |||||
| Dataset use: ImageNet | |||||
| - Dataset size: about 125G | |||||
| - Train: 120G, 1281167 images: 1000 directories | |||||
| - Test: 5G, 50000 images: images should be classified into 1000 directories firstly, just like train images | |||||
| - Data format: RGB images. | |||||
| - Note: Data will be processed in src/dataset.py | |||||
| # Environment Requirements | |||||
| - Hardware(Ascend) | |||||
| - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | |||||
| - Framework | |||||
| - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/) | |||||
| - For more information, please check the resources below: | |||||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) | |||||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||||
| # Script description | |||||
| ## Script and sample code | |||||
| ```python | |||||
| ├── mobilenetv2_quant | |||||
| ├── Readme.md | |||||
| ├── scripts | |||||
| │ ├──run_train.sh | |||||
| │ ├──run_infer.sh | |||||
| │ ├──run_train_quant.sh | |||||
| │ ├──run_infer_quant.sh | |||||
| ├── src | |||||
| │ ├──config.py | |||||
| │ ├──dataset.py | |||||
| │ ├──luanch.py | |||||
| │ ├──lr_generator.py | |||||
| │ ├──mobilenetV2.py | |||||
| ├── train.py | |||||
| ├── eval.py | |||||
| ``` | |||||
| ## Training process | |||||
| ### Train MobileNetV2 model | |||||
| Train a MindSpore fusion MobileNetV2 model for ImageNet, like: | |||||
| - sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH] | |||||
| You can just run this command instead. | |||||
| ``` bash | |||||
| >>> sh run_train.sh Ascend 4 192.168.0.1 0,1,2,3 ~/imagenet/train/ ~/mobilenet.ckpt | |||||
| ``` | |||||
| Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings. | |||||
| ``` | |||||
| >>> epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100] | |||||
| >>> epoch time: 140522.500, per step time: 224.836, avg loss: 5.258 | |||||
| >>> epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200] | |||||
| >>> epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 | |||||
| ``` | |||||
| ### Evaluate MobileNetV2 model | |||||
| Evaluate a MindSpore fusion MobileNetV2 model for ImageNet, like: | |||||
| - sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| You can just run this command instead. | |||||
| ``` bash | |||||
| >>> sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt | |||||
| ``` | |||||
| Inference result will be stored in the example path, you can find result like the followings in `val.log`. | |||||
| ``` | |||||
| >>> result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt | |||||
| ``` | |||||
| ### Fine-tune for quantization aware training | |||||
| Fine tune the fusion model by applying the quantization aware training auto network converter API `convert_quant_network`, after the network convergence then export a quantization aware model checkpoint file. | |||||
| - sh run_train_quant.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH] | |||||
| You can just run this command instead. | |||||
| ``` bash | |||||
| >>> sh run_train_quant.sh Ascend 4 192.168.0.1 0,1,2,3 ~/imagenet/train/ ~/mobilenet.ckpt | |||||
| ``` | |||||
| Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings. | |||||
| ``` | |||||
| >>> epoch: [ 0/60], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100] | |||||
| >>> epoch time: 140522.500, per step time: 224.836, avg loss: 5.258 | |||||
| >>> epoch: [ 1/60], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200] | |||||
| >>> epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 | |||||
| ``` | |||||
| ### Evaluate quantization aware training model | |||||
| Evaluate a MindSpore fusion MobileNetV2 model for ImageNet by applying the quantization aware training, like: | |||||
| - sh run_infer_quant.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| You can just run this command instead. | |||||
| ``` bash | |||||
| >>> sh run_infer_quant.sh Ascend ~/imagenet/val/ ~/train/mobilenet-60_625.ckpt | |||||
| ``` | |||||
| Inference result will be stored in the example path, you can find result like the followings in `val.log`. | |||||
| ``` | |||||
| >>> result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-60_625.ckpt | |||||
| ``` | |||||
| # ModelZoo Homepage | |||||
| [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo) | |||||
| @@ -0,0 +1,76 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Evaluate MobilenetV2 on ImageNet""" | |||||
| import os | |||||
| import argparse | |||||
| from mindspore import context | |||||
| from mindspore import nn | |||||
| from mindspore.train.model import Model | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.train.quant import quant | |||||
| from src.mobilenetV2 import mobilenetV2 | |||||
| from src.dataset import create_dataset | |||||
| from src.config import config_ascend | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| parser.add_argument('--device_target', type=str, default=None, help='Run device target') | |||||
| parser.add_argument('--quantization_aware', type=bool, default=False, help='Use quantization aware training') | |||||
| args_opt = parser.parse_args() | |||||
| if __name__ == '__main__': | |||||
| config_device_target = None | |||||
| if args_opt.device_target == "Ascend": | |||||
| config_device_target = config_ascend | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||||
| device_id=device_id, save_graphs=False) | |||||
| else: | |||||
| raise ValueError("Unsupported device target: {}.".format(args_opt.device_target)) | |||||
| # define fusion network | |||||
| network = mobilenetV2(num_classes=config_device_target.num_classes) | |||||
| if args_opt.quantization_aware: | |||||
| # convert fusion network to quantization aware network | |||||
| network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) | |||||
| # define network loss | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') | |||||
| # define dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=False, | |||||
| config=config_device_target, | |||||
| device_target=args_opt.device_target, | |||||
| batch_size=config_device_target.batch_size) | |||||
| step_size = dataset.get_dataset_size() | |||||
| # load checkpoint | |||||
| if args_opt.checkpoint_path: | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(network, param_dict) | |||||
| network.set_train(False) | |||||
| # define model | |||||
| model = Model(network, loss_fn=loss, metrics={'acc'}) | |||||
| print("============== Starting Validation ==============") | |||||
| res = model.eval(dataset) | |||||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||||
| print("============== End Validation ==============") | |||||
| @@ -0,0 +1,53 @@ | |||||
| #!/usr/bin/env bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 3 ] | |||||
| then | |||||
| echo "Ascend: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH]" | |||||
| exit 1 | |||||
| fi | |||||
| # check dataset path | |||||
| if [ ! -d $2 ] && [ ! -f $2 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$2 is not a directory or file" | |||||
| exit 1 | |||||
| fi | |||||
| # check checkpoint file | |||||
| if [ ! -f $3 ] | |||||
| then | |||||
| echo "error: CHECKPOINT_PATH=$3 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| # set environment | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| export DEVICE_ID=0 | |||||
| export RANK_ID=0 | |||||
| export RANK_SIZE=1 | |||||
| if [ -d "../eval" ]; | |||||
| then | |||||
| rm -rf ../eval | |||||
| fi | |||||
| mkdir ../eval | |||||
| cd ../eval || exit | |||||
| # launch | |||||
| python ${BASEPATH}/../eval.py \ | |||||
| --device_target=$1 \ | |||||
| --dataset_path=$2 \ | |||||
| --checkpoint_path=$3 \ | |||||
| &> infer.log & # dataset val folder path | |||||
| @@ -0,0 +1,54 @@ | |||||
| #!/usr/bin/env bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 3 ] | |||||
| then | |||||
| echo "Ascend: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH]" | |||||
| exit 1 | |||||
| fi | |||||
| # check dataset path | |||||
| if [ ! -d $2 ] && [ ! -f $2 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$2 is not a directory or file" | |||||
| exit 1 | |||||
| fi | |||||
| # check checkpoint file | |||||
| if [ ! -f $3 ] | |||||
| then | |||||
| echo "error: CHECKPOINT_PATH=$3 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| # set environment | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| export DEVICE_ID=0 | |||||
| export RANK_ID=0 | |||||
| export RANK_SIZE=1 | |||||
| if [ -d "../eval" ]; | |||||
| then | |||||
| rm -rf ../eval | |||||
| fi | |||||
| mkdir ../eval | |||||
| cd ../eval || exit | |||||
| # launch | |||||
| python ${BASEPATH}/../eval.py \ | |||||
| --device_target=$1 \ | |||||
| --dataset_path=$2 \ | |||||
| --checkpoint_path=$3 \ | |||||
| --quantization_aware=True \ | |||||
| &> infer.log & # dataset val folder path | |||||
| @@ -0,0 +1,62 @@ | |||||
| #!/usr/bin/env bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| run_ascend() | |||||
| { | |||||
| if [ $2 -lt 1 ] && [ $2 -gt 8 ] | |||||
| then | |||||
| echo "error: DEVICE_NUM=$2 is not in (1-9)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -d $5 ] && [ ! -f $5 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$5 is not a directory or file" | |||||
| exit 1 | |||||
| fi | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | |||||
| if [ -d "../train" ]; | |||||
| then | |||||
| rm -rf ../train | |||||
| fi | |||||
| mkdir ../train | |||||
| cd ../train || exit | |||||
| python ${BASEPATH}/../src/launch.py \ | |||||
| --nproc_per_node=$2 \ | |||||
| --visible_devices=$4 \ | |||||
| --server_id=$3 \ | |||||
| --training_script=${BASEPATH}/../train.py \ | |||||
| --dataset_path=$5 \ | |||||
| --pre_trained=$6 \ | |||||
| --device_target=$1 &> train.log & # dataset train folder | |||||
| } | |||||
| if [ $# -gt 6 ] || [ $# -lt 4 ] | |||||
| then | |||||
| echo "Usage:\n \ | |||||
| Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \ | |||||
| " | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 = "Ascend" ] ; then | |||||
| run_ascend "$@" | |||||
| else | |||||
| echo "Unsupported device target." | |||||
| fi; | |||||
| @@ -0,0 +1,63 @@ | |||||
| #!/usr/bin/env bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| run_ascend() | |||||
| { | |||||
| if [ $2 -lt 1 ] && [ $2 -gt 8 ] | |||||
| then | |||||
| echo "error: DEVICE_NUM=$2 is not in (1-9)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -d $5 ] && [ ! -f $5 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$5 is not a directory or file" | |||||
| exit 1 | |||||
| fi | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | |||||
| if [ -d "../train" ]; | |||||
| then | |||||
| rm -rf ../train | |||||
| fi | |||||
| mkdir ../train | |||||
| cd ../train || exit | |||||
| python ${BASEPATH}/../src/launch.py \ | |||||
| --nproc_per_node=$2 \ | |||||
| --visible_devices=$4 \ | |||||
| --server_id=$3 \ | |||||
| --training_script=${BASEPATH}/../train.py \ | |||||
| --dataset_path=$5 \ | |||||
| --pre_trained=$6 \ | |||||
| --quantization_aware=True \ | |||||
| --device_target=$1 &> train.log & # dataset train folder | |||||
| } | |||||
| if [ $# -gt 6 ] || [ $# -lt 4 ] | |||||
| then | |||||
| echo "Usage:\n \ | |||||
| Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \ | |||||
| " | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 = "Ascend" ] ; then | |||||
| run_ascend "$@" | |||||
| else | |||||
| echo "Unsupported device target." | |||||
| fi; | |||||
| @@ -0,0 +1,60 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in train.py and eval.py | |||||
| """ | |||||
| from easydict import EasyDict as ed | |||||
| config_ascend = ed({ | |||||
| "num_classes": 1000, | |||||
| "image_height": 224, | |||||
| "image_width": 224, | |||||
| "batch_size": 256, | |||||
| "data_load_mode": "mindrecord", | |||||
| "epoch_size": 200, | |||||
| "start_epoch": 0, | |||||
| "warmup_epochs": 4, | |||||
| "lr": 0.4, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 4e-5, | |||||
| "label_smooth": 0.1, | |||||
| "loss_scale": 1024, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 200, | |||||
| "save_checkpoint_path": "./checkpoint", | |||||
| "quantization_aware": False, | |||||
| }) | |||||
| config_ascend_quant = ed({ | |||||
| "num_classes": 1000, | |||||
| "image_height": 224, | |||||
| "image_width": 224, | |||||
| "batch_size": 192, | |||||
| "data_load_mode": "mindrecord", | |||||
| "epoch_size": 60, | |||||
| "start_epoch": 200, | |||||
| "warmup_epochs": 1, | |||||
| "lr": 0.3, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 4e-5, | |||||
| "label_smooth": 0.1, | |||||
| "loss_scale": 1024, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 200, | |||||
| "save_checkpoint_path": "./checkpoint", | |||||
| "quantization_aware": True, | |||||
| }) | |||||
| @@ -0,0 +1,156 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| create train or eval dataset. | |||||
| """ | |||||
| import os | |||||
| from functools import partial | |||||
| import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.engine as de | |||||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||||
| import mindspore.dataset.transforms.c_transforms as C2 | |||||
| import mindspore.dataset.transforms.vision.py_transforms as P | |||||
| from src.config import config_ascend | |||||
| def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32): | |||||
| """ | |||||
| create a train or eval dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1. | |||||
| batch_size(int): the batch size of dataset. Default: 32. | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| if device_target == "Ascend": | |||||
| rank_size = int(os.getenv("RANK_SIZE")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| columns_list = ['image', 'label'] | |||||
| if config_ascend.data_load_mode == "mindrecord": | |||||
| load_func = partial(de.MindDataset, dataset_path, columns_list) | |||||
| else: | |||||
| load_func = partial(de.ImageFolderDatasetV2, dataset_path) | |||||
| if do_train: | |||||
| if rank_size == 1: | |||||
| ds = load_func(num_parallel_workers=8, shuffle=True) | |||||
| else: | |||||
| ds = load_func(num_parallel_workers=8, shuffle=True, | |||||
| num_shards=rank_size, shard_id=rank_id) | |||||
| else: | |||||
| ds = load_func(num_parallel_workers=8, shuffle=False) | |||||
| else: | |||||
| raise ValueError("Unsupport device_target.") | |||||
| resize_height = config.image_height | |||||
| if do_train: | |||||
| buffer_size = 20480 | |||||
| # apply shuffle operations | |||||
| ds = ds.shuffle(buffer_size=buffer_size) | |||||
| # define map operations | |||||
| decode_op = C.Decode() | |||||
| resize_crop_decode_op = C.RandomCropDecodeResize(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333)) | |||||
| horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5) | |||||
| resize_op = C.Resize(256) | |||||
| center_crop = C.CenterCrop(resize_height) | |||||
| normalize_op = C.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], | |||||
| std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) | |||||
| change_swap_op = C.HWC2CHW() | |||||
| if do_train: | |||||
| trans = [resize_crop_decode_op, horizontal_flip_op, normalize_op, change_swap_op] | |||||
| else: | |||||
| trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op] | |||||
| type_cast_op = C2.TypeCast(mstype.int32) | |||||
| ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=16) | |||||
| ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32): | |||||
| """ | |||||
| create a train or eval dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1. | |||||
| batch_size(int): the batch size of dataset. Default: 32. | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| if device_target == "Ascend": | |||||
| rank_size = int(os.getenv("RANK_SIZE")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| if do_train: | |||||
| if rank_size == 1: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | |||||
| else: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, | |||||
| num_shards=rank_size, shard_id=rank_id) | |||||
| else: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=False) | |||||
| else: | |||||
| raise ValueError("Unsupported device target.") | |||||
| resize_height = config.image_height | |||||
| if do_train: | |||||
| buffer_size = 20480 | |||||
| # apply shuffle operations | |||||
| ds = ds.shuffle(buffer_size=buffer_size) | |||||
| # define map operations | |||||
| decode_op = P.Decode() | |||||
| resize_crop_op = P.RandomResizedCrop(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333)) | |||||
| horizontal_flip_op = P.RandomHorizontalFlip(prob=0.5) | |||||
| resize_op = P.Resize(256) | |||||
| center_crop = P.CenterCrop(resize_height) | |||||
| to_tensor = P.ToTensor() | |||||
| normalize_op = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||||
| if do_train: | |||||
| trans = [decode_op, resize_crop_op, horizontal_flip_op, to_tensor, normalize_op] | |||||
| else: | |||||
| trans = [decode_op, resize_op, center_crop, to_tensor, normalize_op] | |||||
| compose = P.ComposeOp(trans) | |||||
| ds = ds.map(input_columns="image", operations=compose(), num_parallel_workers=8, python_multiprocessing=True) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| @@ -0,0 +1,166 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """launch train script""" | |||||
| import os | |||||
| import sys | |||||
| import json | |||||
| import subprocess | |||||
| import shutil | |||||
| import platform | |||||
| from argparse import ArgumentParser | |||||
| def parse_args(): | |||||
| """ | |||||
| parse args . | |||||
| Args: | |||||
| Returns: | |||||
| args. | |||||
| Examples: | |||||
| >>> parse_args() | |||||
| """ | |||||
| parser = ArgumentParser(description="mindspore distributed training launch " | |||||
| "helper utilty that will spawn up " | |||||
| "multiple distributed processes") | |||||
| parser.add_argument("--nproc_per_node", type=int, default=1, | |||||
| help="The number of processes to launch on each node, " | |||||
| "for D training, this is recommended to be set " | |||||
| "to the number of D in your system so that " | |||||
| "each process can be bound to a single D.") | |||||
| parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7", | |||||
| help="will use the visible devices sequentially") | |||||
| parser.add_argument("--server_id", type=str, default="", | |||||
| help="server ip") | |||||
| parser.add_argument("--training_script", type=str, | |||||
| help="The full path to the single D training " | |||||
| "program/script to be launched in parallel, " | |||||
| "followed by all the arguments for the " | |||||
| "training script") | |||||
| # rest from the training program | |||||
| args, unknown = parser.parse_known_args() | |||||
| args.training_script_args = unknown | |||||
| return args | |||||
| def main(): | |||||
| print("start", __file__) | |||||
| args = parse_args() | |||||
| print(args) | |||||
| visible_devices = args.visible_devices.split(',') | |||||
| assert os.path.isfile(args.training_script) | |||||
| assert len(visible_devices) >= args.nproc_per_node | |||||
| print('visible_devices:{}'.format(visible_devices)) | |||||
| if not args.server_id: | |||||
| print('pleaser input server ip!!!') | |||||
| exit(0) | |||||
| print('server_id:{}'.format(args.server_id)) | |||||
| # construct hccn_table | |||||
| hccn_configs = open('/etc/hccn.conf', 'r').readlines() | |||||
| device_ips = {} | |||||
| for hccn_item in hccn_configs: | |||||
| hccn_item = hccn_item.strip() | |||||
| if hccn_item.startswith('address_'): | |||||
| device_id, device_ip = hccn_item.split('=') | |||||
| device_id = device_id.split('_')[1] | |||||
| device_ips[device_id] = device_ip | |||||
| print('device_id:{}, device_ip:{}'.format(device_id, device_ip)) | |||||
| hccn_table = {} | |||||
| arch = platform.processor() | |||||
| hccn_table['board_id'] = {'aarch64': '0x002f', 'x86_64': '0x0000'}[arch] | |||||
| hccn_table['chip_info'] = '910' | |||||
| hccn_table['deploy_mode'] = 'lab' | |||||
| hccn_table['group_count'] = '1' | |||||
| hccn_table['group_list'] = [] | |||||
| instance_list = [] | |||||
| usable_dev = '' | |||||
| for instance_id in range(args.nproc_per_node): | |||||
| instance = {} | |||||
| instance['devices'] = [] | |||||
| device_id = visible_devices[instance_id] | |||||
| device_ip = device_ips[device_id] | |||||
| usable_dev += str(device_id) | |||||
| instance['devices'].append({ | |||||
| 'device_id': device_id, | |||||
| 'device_ip': device_ip, | |||||
| }) | |||||
| instance['rank_id'] = str(instance_id) | |||||
| instance['server_id'] = args.server_id | |||||
| instance_list.append(instance) | |||||
| hccn_table['group_list'].append({ | |||||
| 'device_num': str(args.nproc_per_node), | |||||
| 'server_num': '1', | |||||
| 'group_name': '', | |||||
| 'instance_count': str(args.nproc_per_node), | |||||
| 'instance_list': instance_list, | |||||
| }) | |||||
| hccn_table['para_plane_nic_location'] = 'device' | |||||
| hccn_table['para_plane_nic_name'] = [] | |||||
| for instance_id in range(args.nproc_per_node): | |||||
| eth_id = visible_devices[instance_id] | |||||
| hccn_table['para_plane_nic_name'].append('eth{}'.format(eth_id)) | |||||
| hccn_table['para_plane_nic_num'] = str(args.nproc_per_node) | |||||
| hccn_table['status'] = 'completed' | |||||
| # save hccn_table to file | |||||
| table_path = os.getcwd() | |||||
| if not os.path.exists(table_path): | |||||
| os.mkdir(table_path) | |||||
| table_fn = os.path.join(table_path, | |||||
| 'rank_table_{}p_{}_{}.json'.format(args.nproc_per_node, usable_dev, args.server_id)) | |||||
| with open(table_fn, 'w') as table_fp: | |||||
| json.dump(hccn_table, table_fp, indent=4) | |||||
| sys.stdout.flush() | |||||
| # spawn the processes | |||||
| processes = [] | |||||
| cmds = [] | |||||
| log_files = [] | |||||
| env = os.environ.copy() | |||||
| env['RANK_SIZE'] = str(args.nproc_per_node) | |||||
| cur_path = os.getcwd() | |||||
| for rank_id in range(0, args.nproc_per_node): | |||||
| os.chdir(cur_path) | |||||
| device_id = visible_devices[rank_id] | |||||
| device_dir = os.path.join(cur_path, 'device{}'.format(rank_id)) | |||||
| env['RANK_ID'] = str(rank_id) | |||||
| env['DEVICE_ID'] = str(device_id) | |||||
| if args.nproc_per_node > 1: | |||||
| env['MINDSPORE_HCCL_CONFIG_PATH'] = table_fn | |||||
| env['RANK_TABLE_FILE'] = table_fn | |||||
| if os.path.exists(device_dir): | |||||
| shutil.rmtree(device_dir) | |||||
| os.mkdir(device_dir) | |||||
| os.chdir(device_dir) | |||||
| cmd = [sys.executable, '-u'] | |||||
| cmd.append(args.training_script) | |||||
| cmd.extend(args.training_script_args) | |||||
| log_file = open('{dir}/log{id}.log'.format(dir=device_dir, id=rank_id), 'w') | |||||
| process = subprocess.Popen(cmd, stdout=log_file, stderr=log_file, env=env) | |||||
| processes.append(process) | |||||
| cmds.append(cmd) | |||||
| log_files.append(log_file) | |||||
| for process, cmd, log_file in zip(processes, cmds, log_files): | |||||
| process.wait() | |||||
| if process.returncode != 0: | |||||
| raise subprocess.CalledProcessError(returncode=process, cmd=cmd) | |||||
| log_file.close() | |||||
| if __name__ == "__main__": | |||||
| main() | |||||
| @@ -0,0 +1,54 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """learning rate generator""" | |||||
| import math | |||||
| import numpy as np | |||||
| def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch): | |||||
| """ | |||||
| generate learning rate array | |||||
| Args: | |||||
| global_step(int): total steps of the training | |||||
| lr_init(float): init learning rate | |||||
| lr_end(float): end learning rate | |||||
| lr_max(float): max learning rate | |||||
| warmup_epochs(int): number of warmup epochs | |||||
| total_epochs(int): total epoch of training | |||||
| steps_per_epoch(int): steps of one epoch | |||||
| Returns: | |||||
| np.array, learning rate array | |||||
| """ | |||||
| lr_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| warmup_steps = steps_per_epoch * warmup_epochs | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = lr_init + (lr_max - lr_init) * i / warmup_steps | |||||
| else: | |||||
| lr = lr_end + \ | |||||
| (lr_max - lr_end) * \ | |||||
| (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2. | |||||
| if lr < 0.0: | |||||
| lr = 0.0 | |||||
| lr_each_step.append(lr) | |||||
| current_step = global_step | |||||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||||
| learning_rate = lr_each_step[current_step:] | |||||
| return learning_rate | |||||
| @@ -0,0 +1,231 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """MobileNetV2 Quant model define""" | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore import Tensor | |||||
| __all__ = ['mobilenetV2'] | |||||
| def _make_divisible(v, divisor, min_value=None): | |||||
| if min_value is None: | |||||
| min_value = divisor | |||||
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |||||
| # Make sure that round down does not go down by more than 10%. | |||||
| if new_v < 0.9 * v: | |||||
| new_v += divisor | |||||
| return new_v | |||||
| class GlobalAvgPooling(nn.Cell): | |||||
| """ | |||||
| Global avg pooling definition. | |||||
| Args: | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> GlobalAvgPooling() | |||||
| """ | |||||
| def __init__(self): | |||||
| super(GlobalAvgPooling, self).__init__() | |||||
| self.mean = P.ReduceMean(keep_dims=False) | |||||
| def construct(self, x): | |||||
| x = self.mean(x, (2, 3)) | |||||
| return x | |||||
| class ConvBNReLU(nn.Cell): | |||||
| """ | |||||
| Convolution/Depthwise fused with Batchnorm and ReLU block definition. | |||||
| Args: | |||||
| in_planes (int): Input channel. | |||||
| out_planes (int): Output channel. | |||||
| kernel_size (int): Input kernel size. | |||||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||||
| groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1) | |||||
| """ | |||||
| def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | |||||
| super(ConvBNReLU, self).__init__() | |||||
| padding = (kernel_size - 1) // 2 | |||||
| self.conv = nn.Conv2dBnAct(in_planes, out_planes, kernel_size, | |||||
| stride=stride, | |||||
| pad_mode='pad', | |||||
| padding=padding, | |||||
| group=groups, | |||||
| has_bn=True, | |||||
| activation='relu') | |||||
| def construct(self, x): | |||||
| x = self.conv(x) | |||||
| return x | |||||
| class InvertedResidual(nn.Cell): | |||||
| """ | |||||
| Mobilenetv2 residual block definition. | |||||
| Args: | |||||
| inp (int): Input channel. | |||||
| oup (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||||
| expand_ratio (int): expand ration of input channel | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResidualBlock(3, 256, 1, 1) | |||||
| """ | |||||
| def __init__(self, inp, oup, stride, expand_ratio): | |||||
| super(InvertedResidual, self).__init__() | |||||
| assert stride in [1, 2] | |||||
| hidden_dim = int(round(inp * expand_ratio)) | |||||
| self.use_res_connect = stride == 1 and inp == oup | |||||
| layers = [] | |||||
| if expand_ratio != 1: | |||||
| layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | |||||
| layers.extend([ | |||||
| # dw | |||||
| ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | |||||
| # pw-linear | |||||
| nn.Conv2dBnAct(hidden_dim, oup, kernel_size=1, stride=1, pad_mode='pad', padding=0, group=1, has_bn=True) | |||||
| ]) | |||||
| self.conv = nn.SequentialCell(layers) | |||||
| self.add = P.TensorAdd() | |||||
| def construct(self, x): | |||||
| out = self.conv(x) | |||||
| if self.use_res_connect: | |||||
| out = self.add(out, x) | |||||
| return out | |||||
| class mobilenetV2(nn.Cell): | |||||
| """ | |||||
| mobilenetV2 fusion architecture. | |||||
| Args: | |||||
| class_num (Cell): number of classes. | |||||
| width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1. | |||||
| has_dropout (bool): Is dropout used. Default is false | |||||
| inverted_residual_setting (list): Inverted residual settings. Default is None | |||||
| round_nearest (list): Channel round to . Default is 8 | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> mobilenetV2(num_classes=1000) | |||||
| """ | |||||
| def __init__(self, num_classes=1000, width_mult=1., | |||||
| has_dropout=False, inverted_residual_setting=None, round_nearest=8): | |||||
| super(mobilenetV2, self).__init__() | |||||
| block = InvertedResidual | |||||
| input_channel = 32 | |||||
| last_channel = 1280 | |||||
| # setting of inverted residual blocks | |||||
| self.cfgs = inverted_residual_setting | |||||
| if inverted_residual_setting is None: | |||||
| self.cfgs = [ | |||||
| # t, c, n, s | |||||
| [1, 16, 1, 1], | |||||
| [6, 24, 2, 2], | |||||
| [6, 32, 3, 2], | |||||
| [6, 64, 4, 2], | |||||
| [6, 96, 3, 1], | |||||
| [6, 160, 3, 2], | |||||
| [6, 320, 1, 1], | |||||
| ] | |||||
| # building first layer | |||||
| input_channel = _make_divisible(input_channel * width_mult, round_nearest) | |||||
| self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) | |||||
| features = [ConvBNReLU(3, input_channel, stride=2)] | |||||
| # building inverted residual blocks | |||||
| for t, c, n, s in self.cfgs: | |||||
| output_channel = _make_divisible(c * width_mult, round_nearest) | |||||
| for i in range(n): | |||||
| stride = s if i == 0 else 1 | |||||
| features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | |||||
| input_channel = output_channel | |||||
| # building last several layers | |||||
| features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1)) | |||||
| # make it nn.CellList | |||||
| self.features = nn.SequentialCell(features) | |||||
| # mobilenet head | |||||
| head = ([GlobalAvgPooling(), | |||||
| nn.DenseBnAct(self.out_channels, num_classes, has_bias=True, has_bn=False) | |||||
| ] if not has_dropout else | |||||
| [GlobalAvgPooling(), | |||||
| nn.Dropout(0.2), | |||||
| nn.DenseBnAct(self.out_channels, num_classes, has_bias=True, has_bn=False) | |||||
| ]) | |||||
| self.head = nn.SequentialCell(head) | |||||
| # init weights | |||||
| self._initialize_weights() | |||||
| def construct(self, x): | |||||
| x = self.features(x) | |||||
| x = self.head(x) | |||||
| return x | |||||
| def _initialize_weights(self): | |||||
| """ | |||||
| Initialize weights. | |||||
| Args: | |||||
| Returns: | |||||
| None. | |||||
| Examples: | |||||
| >>> _initialize_weights() | |||||
| """ | |||||
| for _, m in self.cells_and_names(): | |||||
| if isinstance(m, nn.Conv2d): | |||||
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |||||
| w = Tensor(np.random.normal(0, np.sqrt(2. / n), m.weight.data.shape).astype("float32")) | |||||
| m.weight.set_parameter_data(w) | |||||
| if m.bias is not None: | |||||
| m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape, dtype="float32"))) | |||||
| elif isinstance(m, nn.BatchNorm2d): | |||||
| m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape, dtype="float32"))) | |||||
| m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape, dtype="float32"))) | |||||
| elif isinstance(m, nn.Dense): | |||||
| m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape).astype("float32"))) | |||||
| if m.bias is not None: | |||||
| m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape, dtype="float32"))) | |||||
| @@ -0,0 +1,113 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """MobileNetV2 utils""" | |||||
| import time | |||||
| import numpy as np | |||||
| from mindspore.train.callback import Callback | |||||
| from mindspore import Tensor | |||||
| from mindspore import nn | |||||
| from mindspore.nn.loss.loss import _Loss | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import functional as F | |||||
| from mindspore.common import dtype as mstype | |||||
| class Monitor(Callback): | |||||
| """ | |||||
| Monitor loss and time. | |||||
| Args: | |||||
| lr_init (numpy array): train lr | |||||
| Returns: | |||||
| None | |||||
| Examples: | |||||
| >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) | |||||
| """ | |||||
| def __init__(self, lr_init=None): | |||||
| super(Monitor, self).__init__() | |||||
| self.lr_init = lr_init | |||||
| self.lr_init_len = len(lr_init) | |||||
| def epoch_begin(self, run_context): | |||||
| self.losses = [] | |||||
| self.epoch_time = time.time() | |||||
| def epoch_end(self, run_context): | |||||
| cb_params = run_context.original_args() | |||||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||||
| per_step_mseconds = epoch_mseconds / cb_params.batch_num | |||||
| print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, | |||||
| per_step_mseconds, | |||||
| np.mean(self.losses))) | |||||
| def step_begin(self, run_context): | |||||
| self.step_time = time.time() | |||||
| def step_end(self, run_context): | |||||
| cb_params = run_context.original_args() | |||||
| step_mseconds = (time.time() - self.step_time) * 1000 | |||||
| step_loss = cb_params.net_outputs | |||||
| if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): | |||||
| step_loss = step_loss[0] | |||||
| if isinstance(step_loss, Tensor): | |||||
| step_loss = np.mean(step_loss.asnumpy()) | |||||
| self.losses.append(step_loss) | |||||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num | |||||
| print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.5f}]".format( | |||||
| cb_params.cur_epoch_num - | |||||
| 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, | |||||
| np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1])) | |||||
| class CrossEntropyWithLabelSmooth(_Loss): | |||||
| """ | |||||
| CrossEntropyWith LabelSmooth. | |||||
| Args: | |||||
| smooth_factor (float): smooth factor, default=0. | |||||
| num_classes (int): num classes | |||||
| Returns: | |||||
| None. | |||||
| Examples: | |||||
| >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000) | |||||
| """ | |||||
| def __init__(self, smooth_factor=0., num_classes=1000): | |||||
| super(CrossEntropyWithLabelSmooth, self).__init__() | |||||
| self.onehot = P.OneHot() | |||||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||||
| self.off_value = Tensor(1.0 * smooth_factor / | |||||
| (num_classes - 1), mstype.float32) | |||||
| self.ce = nn.SoftmaxCrossEntropyWithLogits() | |||||
| self.mean = P.ReduceMean(False) | |||||
| self.cast = P.Cast() | |||||
| def construct(self, logit, label): | |||||
| one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], | |||||
| self.on_value, self.off_value) | |||||
| out_loss = self.ce(logit, one_hot_label) | |||||
| out_loss = self.mean(out_loss, 0) | |||||
| return out_loss | |||||
| @@ -0,0 +1,131 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Train mobilenetV2 on ImageNet""" | |||||
| import os | |||||
| import argparse | |||||
| import random | |||||
| import numpy as np | |||||
| from mindspore import context | |||||
| from mindspore import Tensor | |||||
| from mindspore import nn | |||||
| from mindspore.train.model import Model, ParallelMode | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.communication.management import init | |||||
| from mindspore.train.quant import quant | |||||
| import mindspore.dataset.engine as de | |||||
| from src.dataset import create_dataset | |||||
| from src.lr_generator import get_lr | |||||
| from src.utils import Monitor, CrossEntropyWithLabelSmooth | |||||
| from src.config import config_ascend, config_ascend_quant | |||||
| from src.mobilenetV2 import mobilenetV2 | |||||
| random.seed(1) | |||||
| np.random.seed(1) | |||||
| de.config.set_seed(1) | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path') | |||||
| parser.add_argument('--device_target', type=str, default=None, help='Run device target') | |||||
| parser.add_argument('--quantization_aware', type=bool, default=False, help='Use quantization aware training') | |||||
| args_opt = parser.parse_args() | |||||
| if args_opt.device_target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| rank_id = int(os.getenv('RANK_ID')) | |||||
| rank_size = int(os.getenv('RANK_SIZE')) | |||||
| run_distribute = rank_size > 1 | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, | |||||
| device_target="Ascend", | |||||
| device_id=device_id, save_graphs=False) | |||||
| else: | |||||
| raise ValueError("Unsupported device target.") | |||||
| if __name__ == '__main__': | |||||
| # train on ascend | |||||
| config = config_ascend_quant if args_opt.quantization_aware else config_ascend | |||||
| print("training args: {}".format(args_opt)) | |||||
| print("training configure: {}".format(config)) | |||||
| print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) | |||||
| epoch_size = config.epoch_size | |||||
| # distribute init | |||||
| if run_distribute: | |||||
| context.set_auto_parallel_context(device_num=rank_size, | |||||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| parameter_broadcast=True, | |||||
| mirror_mean=True) | |||||
| init() | |||||
| # define network | |||||
| network = mobilenetV2(num_classes=config.num_classes) | |||||
| # define loss | |||||
| if config.label_smooth > 0: | |||||
| loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes) | |||||
| else: | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') | |||||
| # define dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=True, | |||||
| config=config, | |||||
| device_target=args_opt.device_target, | |||||
| repeat_num=epoch_size, | |||||
| batch_size=config.batch_size) | |||||
| step_size = dataset.get_dataset_size() | |||||
| # load pre trained ckpt | |||||
| if args_opt.pre_trained: | |||||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||||
| load_param_into_net(network, param_dict) | |||||
| # convert fusion network to quantization aware network | |||||
| if config.quantization_aware: | |||||
| network = quant.convert_quant_network(network, | |||||
| bn_fold=True, | |||||
| per_channel=[True, False], | |||||
| symmetric=[True, False]) | |||||
| # get learning rate | |||||
| lr = Tensor(get_lr(global_step=config.start_epoch * step_size, | |||||
| lr_init=0, | |||||
| lr_end=0, | |||||
| lr_max=config.lr, | |||||
| warmup_epochs=config.warmup_epochs, | |||||
| total_epochs=epoch_size + config.start_epoch, | |||||
| steps_per_epoch=step_size)) | |||||
| # define optimization | |||||
| opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum, | |||||
| config.weight_decay) | |||||
| # define model | |||||
| model = Model(network, loss_fn=loss, optimizer=opt) | |||||
| print("============== Starting Training ==============") | |||||
| callback = None | |||||
| if rank_id == 0: | |||||
| callback = [Monitor(lr_init=lr.asnumpy())] | |||||
| if config.save_checkpoint: | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||||
| ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", | |||||
| directory=config.save_checkpoint_path, | |||||
| config=config_ck) | |||||
| callback += [ckpt_cb] | |||||
| model.train(epoch_size, dataset, callbacks=callback) | |||||
| print("============== End Training ==============") | |||||
| @@ -29,7 +29,7 @@ run_ascend() | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | BASEPATH=$(cd "`dirname $0`" || exit; pwd) | ||||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | export PYTHONPATH=${BASEPATH}:$PYTHONPATH | ||||
| if [ -d "train" ]; | |||||
| if [ -d "../train" ]; | |||||
| then | then | ||||
| rm -rf ../train | rm -rf ../train | ||||
| fi | fi | ||||
| @@ -0,0 +1,122 @@ | |||||
| # ResNet-50_quant Example | |||||
| ## Description | |||||
| This is an example of training ResNet-50_quant with ImageNet2012 dataset in MindSpore. | |||||
| ## Requirements | |||||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||||
| - Download the dataset ImageNet2012 | |||||
| > Unzip the ImageNet2012 dataset to any path you want and the folder structure should include train and eval dataset as follows: | |||||
| > ``` | |||||
| > . | |||||
| > ├── ilsvrc # train dataset | |||||
| > └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images | |||||
| > ``` | |||||
| ## Example structure | |||||
| ```shell | |||||
| . | |||||
| ├── Resnet50_quant | |||||
| ├── Readme.md | |||||
| ├── scripts | |||||
| │ ├──run_train.sh | |||||
| │ ├──run_eval.sh | |||||
| ├── src | |||||
| │ ├──config.py | |||||
| │ ├──crossentropy.py | |||||
| │ ├──dataset.py | |||||
| │ ├──luanch.py | |||||
| │ ├──lr_generator.py | |||||
| │ ├──utils.py | |||||
| ├── models | |||||
| │ ├──resnet_quant.py | |||||
| ├── train.py | |||||
| ├── eval.py | |||||
| ``` | |||||
| ## Parameter configuration | |||||
| Parameters for both training and inference can be set in config.py. | |||||
| ``` | |||||
| "class_num": 1001, # dataset class number | |||||
| "batch_size": 32, # batch size of input tensor | |||||
| "loss_scale": 1024, # loss scale | |||||
| "momentum": 0.9, # momentum optimizer | |||||
| "weight_decay": 1e-4, # weight decay | |||||
| "epoch_size": 120, # only valid for taining, which is always 1 for inference | |||||
| "pretrained_epoch_size": 90, # epoch size that model has been trained before load pretrained checkpoint | |||||
| "buffer_size": 1000, # number of queue size in data preprocessing | |||||
| "image_height": 224, # image height | |||||
| "image_width": 224, # image width | |||||
| "save_checkpoint": True, # whether save checkpoint or not | |||||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch | |||||
| "keep_checkpoint_max": 50, # only keep the last keep_checkpoint_max checkpoint | |||||
| "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path | |||||
| "warmup_epochs": 0, # number of warmup epoch | |||||
| "lr_decay_mode": "cosine", # decay mode for generating learning rate | |||||
| "label_smooth": True, # label smooth | |||||
| "label_smooth_factor": 0.1, # label smooth factor | |||||
| "lr_init": 0, # initial learning rate | |||||
| "lr_max": 0.005, # maximum learning rate | |||||
| ``` | |||||
| ## Running the example | |||||
| ### Train | |||||
| ### Usage | |||||
| - Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH] | |||||
| ### Launch | |||||
| ``` | |||||
| # training example | |||||
| Ascend: sh run_train.sh Ascend 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet/train/ | |||||
| ``` | |||||
| ### Result | |||||
| Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings. | |||||
| ``` | |||||
| epoch: 1 step: 5004, loss is 4.8995576 | |||||
| epoch: 2 step: 5004, loss is 3.9235563 | |||||
| epoch: 3 step: 5004, loss is 3.833077 | |||||
| epoch: 4 step: 5004, loss is 3.2795618 | |||||
| epoch: 5 step: 5004, loss is 3.1978393 | |||||
| ``` | |||||
| ## Eval process | |||||
| ### Usage | |||||
| - Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| ### Launch | |||||
| ``` | |||||
| # infer example | |||||
| Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/checkpoint/resnet50-110_5004.ckpt | |||||
| ``` | |||||
| > checkpoint can be produced in training process. | |||||
| #### Result | |||||
| Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log. | |||||
| ``` | |||||
| result: {'acc': 0.75.252054737516005} ckpt=train_parallel0/resnet-110_5004.ckpt | |||||
| ``` | |||||
| @@ -0,0 +1,78 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Evaluate Resnet50 on ImageNet""" | |||||
| import os | |||||
| import argparse | |||||
| from src.config import quant_set, config_quant, config_noquant | |||||
| from src.dataset import create_dataset | |||||
| from src.crossentropy import CrossEntropy | |||||
| from src.utils import _load_param_into_net | |||||
| from models.resnet_quant import resnet50_quant | |||||
| from mindspore import context | |||||
| from mindspore.train.model import Model | |||||
| from mindspore.train.serialization import load_checkpoint | |||||
| from mindspore.train.quant import quant | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) | |||||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||||
| if args_opt.device_target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(device_id=device_id) | |||||
| if __name__ == '__main__': | |||||
| # define fusion network | |||||
| net = resnet50_quant(class_num=config.class_num) | |||||
| if quant_set.quantization_aware: | |||||
| # convert fusion network to quantization aware network | |||||
| net = quant.convert_quant_network(net, | |||||
| bn_fold=True, | |||||
| per_channel=[True, False], | |||||
| symmetric=[True, False]) | |||||
| # define network loss | |||||
| if not config.use_label_smooth: | |||||
| config.label_smooth_factor = 0.0 | |||||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, | |||||
| num_classes=config.class_num) | |||||
| # define dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=False, | |||||
| batch_size=config.batch_size, | |||||
| target=args_opt.device_target) | |||||
| step_size = dataset.get_dataset_size() | |||||
| # load checkpoint | |||||
| if args_opt.checkpoint_path: | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| _load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| # define model | |||||
| model = Model(net, loss_fn=loss, metrics={'acc'}) | |||||
| print("============== Starting Validation ==============") | |||||
| res = model.eval(dataset) | |||||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||||
| print("============== End Validation ==============") | |||||
| @@ -0,0 +1,251 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ResNet.""" | |||||
| import mindspore.nn as nn | |||||
| from mindspore.ops import operations as P | |||||
| class ConvBNReLU(nn.Cell): | |||||
| """ | |||||
| Convolution/Depthwise fused with Batchnorm and ReLU block definition. | |||||
| Args: | |||||
| in_planes (int): Input channel. | |||||
| out_planes (int): Output channel. | |||||
| kernel_size (int): Input kernel size. | |||||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||||
| groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1) | |||||
| """ | |||||
| def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | |||||
| super(ConvBNReLU, self).__init__() | |||||
| padding = (kernel_size - 1) // 2 | |||||
| conv = nn.Conv2dBnAct(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding, | |||||
| group=groups, has_bn=True, activation='relu') | |||||
| self.features = conv | |||||
| def construct(self, x): | |||||
| output = self.features(x) | |||||
| return output | |||||
| class ResidualBlock(nn.Cell): | |||||
| """ | |||||
| ResNet V1 residual block definition. | |||||
| Args: | |||||
| in_channel (int): Input channel. | |||||
| out_channel (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResidualBlock(3, 256, stride=2) | |||||
| """ | |||||
| expansion = 4 | |||||
| def __init__(self, | |||||
| in_channel, | |||||
| out_channel, | |||||
| stride=1): | |||||
| super(ResidualBlock, self).__init__() | |||||
| channel = out_channel // self.expansion | |||||
| self.conv1 = ConvBNReLU(in_channel, channel, kernel_size=1, stride=1) | |||||
| self.conv2 = ConvBNReLU(channel, channel, kernel_size=3, stride=stride) | |||||
| self.conv3 = nn.Conv2dBnAct(channel, out_channel, kernel_size=1, stride=1, pad_mode='same', padding=0, | |||||
| has_bn=True, activation='relu') | |||||
| self.down_sample = False | |||||
| if stride != 1 or in_channel != out_channel: | |||||
| self.down_sample = True | |||||
| self.down_sample_layer = None | |||||
| if self.down_sample: | |||||
| self.down_sample_layer = nn.Conv2dBnAct(in_channel, out_channel, | |||||
| kernel_size=1, stride=stride, | |||||
| pad_mode='same', padding=0, has_bn=True, activation='relu') | |||||
| self.add = P.TensorAdd() | |||||
| self.relu = P.ReLU() | |||||
| def construct(self, x): | |||||
| identity = x | |||||
| out = self.conv1(x) | |||||
| out = self.conv2(out) | |||||
| out = self.conv3(out) | |||||
| if self.down_sample: | |||||
| identity = self.down_sample_layer(identity) | |||||
| out = self.add(out, identity) | |||||
| out = self.relu(out) | |||||
| return out | |||||
| class ResNet(nn.Cell): | |||||
| """ | |||||
| ResNet architecture. | |||||
| Args: | |||||
| block (Cell): Block for network. | |||||
| layer_nums (list): Numbers of block in different layers. | |||||
| in_channels (list): Input channel in each layer. | |||||
| out_channels (list): Output channel in each layer. | |||||
| strides (list): Stride size in each layer. | |||||
| num_classes (int): The number of classes that the training images are belonging to. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResNet(ResidualBlock, | |||||
| >>> [3, 4, 6, 3], | |||||
| >>> [64, 256, 512, 1024], | |||||
| >>> [256, 512, 1024, 2048], | |||||
| >>> [1, 2, 2, 2], | |||||
| >>> 10) | |||||
| """ | |||||
| def __init__(self, | |||||
| block, | |||||
| layer_nums, | |||||
| in_channels, | |||||
| out_channels, | |||||
| strides, | |||||
| num_classes): | |||||
| super(ResNet, self).__init__() | |||||
| if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: | |||||
| raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!") | |||||
| self.conv1 = ConvBNReLU(3, 64, kernel_size=7, stride=2) | |||||
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") | |||||
| self.layer1 = self._make_layer(block, | |||||
| layer_nums[0], | |||||
| in_channel=in_channels[0], | |||||
| out_channel=out_channels[0], | |||||
| stride=strides[0]) | |||||
| self.layer2 = self._make_layer(block, | |||||
| layer_nums[1], | |||||
| in_channel=in_channels[1], | |||||
| out_channel=out_channels[1], | |||||
| stride=strides[1]) | |||||
| self.layer3 = self._make_layer(block, | |||||
| layer_nums[2], | |||||
| in_channel=in_channels[2], | |||||
| out_channel=out_channels[2], | |||||
| stride=strides[2]) | |||||
| self.layer4 = self._make_layer(block, | |||||
| layer_nums[3], | |||||
| in_channel=in_channels[3], | |||||
| out_channel=out_channels[3], | |||||
| stride=strides[3]) | |||||
| self.mean = P.ReduceMean(keep_dims=True) | |||||
| self.flatten = nn.Flatten() | |||||
| self.end_point = nn.DenseBnAct(out_channels[3], num_classes, has_bias=True, has_bn=False) | |||||
| def _make_layer(self, block, layer_num, in_channel, out_channel, stride): | |||||
| """ | |||||
| Make stage network of ResNet. | |||||
| Args: | |||||
| block (Cell): Resnet block. | |||||
| layer_num (int): Layer number. | |||||
| in_channel (int): Input channel. | |||||
| out_channel (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. | |||||
| Returns: | |||||
| SequentialCell, the output layer. | |||||
| Examples: | |||||
| >>> _make_layer(ResidualBlock, 3, 128, 256, 2) | |||||
| """ | |||||
| layers = [] | |||||
| resnet_block = block(in_channel, out_channel, stride=stride) | |||||
| layers.append(resnet_block) | |||||
| for _ in range(1, layer_num): | |||||
| resnet_block = block(out_channel, out_channel, stride=1) | |||||
| layers.append(resnet_block) | |||||
| return nn.SequentialCell(layers) | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| c1 = self.maxpool(x) | |||||
| c2 = self.layer1(c1) | |||||
| c3 = self.layer2(c2) | |||||
| c4 = self.layer3(c3) | |||||
| c5 = self.layer4(c4) | |||||
| out = self.mean(c5, (2, 3)) | |||||
| out = self.flatten(out) | |||||
| out = self.end_point(out) | |||||
| return out | |||||
| def resnet50_quant(class_num=10001): | |||||
| """ | |||||
| Get ResNet50 neural network. | |||||
| Args: | |||||
| class_num (int): Class number. | |||||
| Returns: | |||||
| Cell, cell instance of ResNet50 neural network. | |||||
| Examples: | |||||
| >>> net = resnet50_quant(10) | |||||
| """ | |||||
| return ResNet(ResidualBlock, | |||||
| [3, 4, 6, 3], | |||||
| [64, 256, 512, 1024], | |||||
| [256, 512, 1024, 2048], | |||||
| [1, 2, 2, 2], | |||||
| class_num) | |||||
| def resnet101_quant(class_num=1001): | |||||
| """ | |||||
| Get ResNet101 neural network. | |||||
| Args: | |||||
| class_num (int): Class number. | |||||
| Returns: | |||||
| Cell, cell instance of ResNet101 neural network. | |||||
| Examples: | |||||
| >>> net = resnet101(1001) | |||||
| """ | |||||
| return ResNet(ResidualBlock, | |||||
| [3, 4, 23, 3], | |||||
| [64, 256, 512, 1024], | |||||
| [256, 512, 1024, 2048], | |||||
| [1, 2, 2, 2], | |||||
| class_num) | |||||
| @@ -0,0 +1,54 @@ | |||||
| #!/usr/bin/env bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 3 ] | |||||
| then | |||||
| echo "Ascend: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH]" | |||||
| exit 1 | |||||
| fi | |||||
| # check dataset path | |||||
| if [ ! -d $2 ] && [ ! -f $2 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$2 is not a directory or file" | |||||
| exit 1 | |||||
| fi | |||||
| # check checkpoint file | |||||
| if [ ! -f $3 ] | |||||
| then | |||||
| echo "error: CHECKPOINT_PATH=$3 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| # set environment | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | |||||
| export DEVICE_ID=0 | |||||
| export RANK_ID=0 | |||||
| export RANK_SIZE=1 | |||||
| if [ -d "../eval" ]; | |||||
| then | |||||
| rm -rf ../eval | |||||
| fi | |||||
| mkdir ../eval | |||||
| cd ../eval || exit | |||||
| # luanch | |||||
| python ${BASEPATH}/../eval.py \ | |||||
| --device_target=$1 \ | |||||
| --dataset_path=$2 \ | |||||
| --checkpoint_path=$3 \ | |||||
| &> infer.log & # dataset val folder path | |||||
| @@ -0,0 +1,62 @@ | |||||
| #!/usr/bin/env bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| run_ascend() | |||||
| { | |||||
| if [ $2 -lt 1 ] && [ $2 -gt 8 ] | |||||
| then | |||||
| echo "error: DEVICE_NUM=$2 is not in (1-8)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -d $5 ] && [ ! -f $5 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$5 is not a directory or file" | |||||
| exit 1 | |||||
| fi | |||||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | |||||
| if [ -d "../train" ]; | |||||
| then | |||||
| rm -rf ../train | |||||
| fi | |||||
| mkdir ../train | |||||
| cd ../train || exit | |||||
| python ${BASEPATH}/../src/launch.py \ | |||||
| --nproc_per_node=$2 \ | |||||
| --visible_devices=$4 \ | |||||
| --server_id=$3 \ | |||||
| --training_script=${BASEPATH}/../train.py \ | |||||
| --dataset_path=$5 \ | |||||
| --pre_trained=$6 \ | |||||
| --device_target=$1 &> train.log & # dataset train folder | |||||
| } | |||||
| if [ $# -gt 6 ] || [ $# -lt 4 ] | |||||
| then | |||||
| echo "Usage:\n \ | |||||
| Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \ | |||||
| " | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 = "Ascend" ] ; then | |||||
| run_ascend "$@" | |||||
| else | |||||
| echo "not support platform" | |||||
| fi; | |||||
| @@ -0,0 +1,68 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in train.py and eval.py | |||||
| """ | |||||
| from easydict import EasyDict as ed | |||||
| quant_set = ed({ | |||||
| "quantization_aware": True, | |||||
| }) | |||||
| config_noquant = ed({ | |||||
| "class_num": 1001, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 1024, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 1e-4, | |||||
| "epoch_size": 90, | |||||
| "pretrained_epoch_size": 1, | |||||
| "buffer_size": 1000, | |||||
| "image_height": 224, | |||||
| "image_width": 224, | |||||
| "data_load_mode": "mindrecord", | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 50, | |||||
| "save_checkpoint_path": "./", | |||||
| "warmup_epochs": 0, | |||||
| "lr_decay_mode": "cosine", | |||||
| "use_label_smooth": True, | |||||
| "label_smooth_factor": 0.1, | |||||
| "lr_init": 0, | |||||
| "lr_max": 0.1, | |||||
| }) | |||||
| config_quant = ed({ | |||||
| "class_num": 1001, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 1024, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 1e-4, | |||||
| "epoch_size": 120, | |||||
| "pretrained_epoch_size": 90, | |||||
| "buffer_size": 1000, | |||||
| "image_height": 224, | |||||
| "image_width": 224, | |||||
| "data_load_mode": "mindrecord", | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 50, | |||||
| "save_checkpoint_path": "./", | |||||
| "warmup_epochs": 0, | |||||
| "lr_decay_mode": "cosine", | |||||
| "use_label_smooth": True, | |||||
| "label_smooth_factor": 0.1, | |||||
| "lr_init": 0, | |||||
| "lr_max": 0.005, | |||||
| }) | |||||
| @@ -0,0 +1,39 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """define loss function for network""" | |||||
| from mindspore.nn.loss.loss import _Loss | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import functional as F | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | |||||
| import mindspore.nn as nn | |||||
| class CrossEntropy(_Loss): | |||||
| """the redefined loss function with SoftmaxCrossEntropyWithLogits""" | |||||
| def __init__(self, smooth_factor=0, num_classes=1001): | |||||
| super(CrossEntropy, self).__init__() | |||||
| self.onehot = P.OneHot() | |||||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) | |||||
| self.ce = nn.SoftmaxCrossEntropyWithLogits() | |||||
| self.mean = P.ReduceMean(False) | |||||
| def construct(self, logit, label): | |||||
| one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||||
| loss = self.ce(logit, one_hot_label) | |||||
| loss = self.mean(loss, 0) | |||||
| return loss | |||||
| @@ -0,0 +1,157 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| create train or eval dataset. | |||||
| """ | |||||
| import os | |||||
| from functools import partial | |||||
| import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.engine as de | |||||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||||
| import mindspore.dataset.transforms.c_transforms as C2 | |||||
| import mindspore.dataset.transforms.vision.py_transforms as P | |||||
| from mindspore.communication.management import init, get_rank, get_group_size | |||||
| from src.config import quant_set, config_quant, config_noquant | |||||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | |||||
| """ | |||||
| create a train or eval dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||||
| batch_size(int): the batch size of dataset. Default: 32 | |||||
| target(str): the device target. Default: Ascend | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| if target == "Ascend": | |||||
| device_num = int(os.getenv("RANK_SIZE")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| else: | |||||
| init("nccl") | |||||
| rank_id = get_rank() | |||||
| device_num = get_group_size() | |||||
| columns_list = ['image', 'label'] | |||||
| if config.data_load_mode == "mindrecord": | |||||
| load_func = partial(de.MindDataset, dataset_path, columns_list) | |||||
| else: | |||||
| load_func = partial(de.ImageFolderDatasetV2, dataset_path) | |||||
| if device_num == 1: | |||||
| ds = load_func(num_parallel_workers=8, shuffle=True) | |||||
| else: | |||||
| ds = load_func(num_parallel_workers=8, shuffle=True, | |||||
| num_shards=device_num, shard_id=rank_id) | |||||
| image_size = config.image_height | |||||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||||
| # define map operations | |||||
| if do_train: | |||||
| trans = [ | |||||
| C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), | |||||
| C.RandomHorizontalFlip(prob=0.5), | |||||
| C.Normalize(mean=mean, std=std), | |||||
| C.HWC2CHW() | |||||
| ] | |||||
| else: | |||||
| trans = [ | |||||
| C.Decode(), | |||||
| C.Resize(256), | |||||
| C.CenterCrop(image_size), | |||||
| C.Normalize(mean=mean, std=std), | |||||
| C.HWC2CHW() | |||||
| ] | |||||
| type_cast_op = C2.TypeCast(mstype.int32) | |||||
| ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans) | |||||
| ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | |||||
| """ | |||||
| create a train or eval dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||||
| batch_size(int): the batch size of dataset. Default: 32 | |||||
| target(str): the device target. Default: Ascend | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| if target == "Ascend": | |||||
| device_num = int(os.getenv("RANK_SIZE")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| else: | |||||
| init("nccl") | |||||
| rank_id = get_rank() | |||||
| device_num = get_group_size() | |||||
| if do_train: | |||||
| if device_num == 1: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | |||||
| else: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, | |||||
| num_shards=device_num, shard_id=rank_id) | |||||
| else: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=False) | |||||
| image_size = 224 | |||||
| # define map operations | |||||
| decode_op = P.Decode() | |||||
| resize_crop_op = P.RandomResizedCrop(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)) | |||||
| horizontal_flip_op = P.RandomHorizontalFlip(prob=0.5) | |||||
| resize_op = P.Resize(256) | |||||
| center_crop = P.CenterCrop(image_size) | |||||
| to_tensor = P.ToTensor() | |||||
| normalize_op = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||||
| # define map operations | |||||
| if do_train: | |||||
| trans = [decode_op, resize_crop_op, horizontal_flip_op, to_tensor, normalize_op] | |||||
| else: | |||||
| trans = [decode_op, resize_op, center_crop, to_tensor, normalize_op] | |||||
| compose = P.ComposeOp(trans) | |||||
| ds = ds.map(input_columns="image", operations=compose(), num_parallel_workers=8, python_multiprocessing=True) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| @@ -0,0 +1,165 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """launch train script""" | |||||
| import os | |||||
| import sys | |||||
| import json | |||||
| import subprocess | |||||
| import shutil | |||||
| import platform | |||||
| from argparse import ArgumentParser | |||||
| def parse_args(): | |||||
| """ | |||||
| parse args . | |||||
| Args: | |||||
| Returns: | |||||
| args. | |||||
| Examples: | |||||
| >>> parse_args() | |||||
| """ | |||||
| parser = ArgumentParser(description="mindspore distributed training launch " | |||||
| "helper utilty that will spawn up " | |||||
| "multiple distributed processes") | |||||
| parser.add_argument("--nproc_per_node", type=int, default=1, | |||||
| help="The number of processes to launch on each node, " | |||||
| "for D training, this is recommended to be set " | |||||
| "to the number of D in your system so that " | |||||
| "each process can be bound to a single D.") | |||||
| parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7", | |||||
| help="will use the visible devices sequentially") | |||||
| parser.add_argument("--server_id", type=str, default="", | |||||
| help="server ip") | |||||
| parser.add_argument("--training_script", type=str, | |||||
| help="The full path to the single D training " | |||||
| "program/script to be launched in parallel, " | |||||
| "followed by all the arguments for the " | |||||
| "training script") | |||||
| # rest from the training program | |||||
| args, unknown = parser.parse_known_args() | |||||
| args.training_script_args = unknown | |||||
| return args | |||||
| def main(): | |||||
| print("start", __file__) | |||||
| args = parse_args() | |||||
| print(args) | |||||
| visible_devices = args.visible_devices.split(',') | |||||
| assert os.path.isfile(args.training_script) | |||||
| assert len(visible_devices) >= args.nproc_per_node | |||||
| print('visible_devices:{}'.format(visible_devices)) | |||||
| if not args.server_id: | |||||
| print('pleaser input server ip!!!') | |||||
| exit(0) | |||||
| print('server_id:{}'.format(args.server_id)) | |||||
| # construct hccn_table | |||||
| hccn_configs = open('/etc/hccn.conf', 'r').readlines() | |||||
| device_ips = {} | |||||
| for hccn_item in hccn_configs: | |||||
| hccn_item = hccn_item.strip() | |||||
| if hccn_item.startswith('address_'): | |||||
| device_id, device_ip = hccn_item.split('=') | |||||
| device_id = device_id.split('_')[1] | |||||
| device_ips[device_id] = device_ip | |||||
| print('device_id:{}, device_ip:{}'.format(device_id, device_ip)) | |||||
| hccn_table = {} | |||||
| arch = platform.processor() | |||||
| hccn_table['board_id'] = {'aarch64': '0x002f', 'x86_64': '0x0000'}[arch] | |||||
| hccn_table['chip_info'] = '910' | |||||
| hccn_table['deploy_mode'] = 'lab' | |||||
| hccn_table['group_count'] = '1' | |||||
| hccn_table['group_list'] = [] | |||||
| instance_list = [] | |||||
| usable_dev = '' | |||||
| for instance_id in range(args.nproc_per_node): | |||||
| instance = {} | |||||
| instance['devices'] = [] | |||||
| device_id = visible_devices[instance_id] | |||||
| device_ip = device_ips[device_id] | |||||
| usable_dev += str(device_id) | |||||
| instance['devices'].append({ | |||||
| 'device_id': device_id, | |||||
| 'device_ip': device_ip, | |||||
| }) | |||||
| instance['rank_id'] = str(instance_id) | |||||
| instance['server_id'] = args.server_id | |||||
| instance_list.append(instance) | |||||
| hccn_table['group_list'].append({ | |||||
| 'device_num': str(args.nproc_per_node), | |||||
| 'server_num': '1', | |||||
| 'group_name': '', | |||||
| 'instance_count': str(args.nproc_per_node), | |||||
| 'instance_list': instance_list, | |||||
| }) | |||||
| hccn_table['para_plane_nic_location'] = 'device' | |||||
| hccn_table['para_plane_nic_name'] = [] | |||||
| for instance_id in range(args.nproc_per_node): | |||||
| eth_id = visible_devices[instance_id] | |||||
| hccn_table['para_plane_nic_name'].append('eth{}'.format(eth_id)) | |||||
| hccn_table['para_plane_nic_num'] = str(args.nproc_per_node) | |||||
| hccn_table['status'] = 'completed' | |||||
| # save hccn_table to file | |||||
| table_path = os.getcwd() | |||||
| if not os.path.exists(table_path): | |||||
| os.mkdir(table_path) | |||||
| table_fn = os.path.join(table_path, | |||||
| 'rank_table_{}p_{}_{}.json'.format(args.nproc_per_node, usable_dev, args.server_id)) | |||||
| with open(table_fn, 'w') as table_fp: | |||||
| json.dump(hccn_table, table_fp, indent=4) | |||||
| sys.stdout.flush() | |||||
| # spawn the processes | |||||
| processes = [] | |||||
| cmds = [] | |||||
| log_files = [] | |||||
| env = os.environ.copy() | |||||
| env['RANK_SIZE'] = str(args.nproc_per_node) | |||||
| cur_path = os.getcwd() | |||||
| for rank_id in range(0, args.nproc_per_node): | |||||
| os.chdir(cur_path) | |||||
| device_id = visible_devices[rank_id] | |||||
| device_dir = os.path.join(cur_path, 'device{}'.format(rank_id)) | |||||
| env['RANK_ID'] = str(rank_id) | |||||
| env['DEVICE_ID'] = str(device_id) | |||||
| if args.nproc_per_node > 1: | |||||
| env['MINDSPORE_HCCL_CONFIG_PATH'] = table_fn | |||||
| env['RANK_TABLE_FILE'] = table_fn | |||||
| if os.path.exists(device_dir): | |||||
| shutil.rmtree(device_dir) | |||||
| os.mkdir(device_dir) | |||||
| os.chdir(device_dir) | |||||
| cmd = [sys.executable, '-u'] | |||||
| cmd.append(args.training_script) | |||||
| cmd.extend(args.training_script_args) | |||||
| log_file = open('{dir}/log{id}.log'.format(dir=device_dir, id=rank_id), 'w') | |||||
| process = subprocess.Popen(cmd, stdout=log_file, stderr=log_file, env=env) | |||||
| processes.append(process) | |||||
| cmds.append(cmd) | |||||
| log_files.append(log_file) | |||||
| for process, cmd, log_file in zip(processes, cmds, log_files): | |||||
| process.wait() | |||||
| if process.returncode != 0: | |||||
| raise subprocess.CalledProcessError(returncode=process, cmd=cmd) | |||||
| log_file.close() | |||||
| if __name__ == "__main__": | |||||
| main() | |||||
| @@ -0,0 +1,87 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """learning rate generator""" | |||||
| import math | |||||
| import numpy as np | |||||
| def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode): | |||||
| """ | |||||
| generate learning rate array | |||||
| Args: | |||||
| lr_init(float): init learning rate | |||||
| lr_end(float): end learning rate | |||||
| lr_max(float): max learning rate | |||||
| warmup_epochs(int): number of warmup epochs | |||||
| total_epochs(int): total epoch of training | |||||
| steps_per_epoch(int): steps of one epoch | |||||
| lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default | |||||
| Returns: | |||||
| np.array, learning rate array | |||||
| """ | |||||
| lr_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| warmup_steps = steps_per_epoch * warmup_epochs | |||||
| if lr_decay_mode == 'steps': | |||||
| decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps] | |||||
| for i in range(total_steps): | |||||
| if i < decay_epoch_index[0]: | |||||
| lr = lr_max | |||||
| elif i < decay_epoch_index[1]: | |||||
| lr = lr_max * 0.1 | |||||
| elif i < decay_epoch_index[2]: | |||||
| lr = lr_max * 0.01 | |||||
| else: | |||||
| lr = lr_max * 0.001 | |||||
| lr_each_step.append(lr) | |||||
| elif lr_decay_mode == 'poly': | |||||
| if warmup_steps != 0: | |||||
| inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps) | |||||
| else: | |||||
| inc_each_step = 0 | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = float(lr_init) + inc_each_step * float(i) | |||||
| else: | |||||
| base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps))) | |||||
| lr = float(lr_max) * base * base | |||||
| if lr < 0.0: | |||||
| lr = 0.0 | |||||
| lr_each_step.append(lr) | |||||
| elif lr_decay_mode == 'cosine': | |||||
| decay_steps = total_steps - warmup_steps | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps) | |||||
| lr = float(lr_init) + lr_inc * (i + 1) | |||||
| else: | |||||
| linear_decay = (total_steps - i) / decay_steps | |||||
| cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps)) | |||||
| decayed = linear_decay * cosine_decay + 0.00001 | |||||
| lr = lr_max * decayed | |||||
| lr_each_step.append(lr) | |||||
| else: | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = lr_init + (lr_max - lr_init) * i / warmup_steps | |||||
| else: | |||||
| lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps) | |||||
| lr_each_step.append(lr) | |||||
| learning_rate = np.array(lr_each_step).astype(np.float32) | |||||
| return learning_rate | |||||
| @@ -0,0 +1,46 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """utils script""" | |||||
| def _load_param_into_net(model, params_dict): | |||||
| """ | |||||
| load fp32 model parameters to quantization model. | |||||
| Args: | |||||
| model: quantization model | |||||
| params_dict: f32 param | |||||
| Returns: | |||||
| None | |||||
| """ | |||||
| iterable_dict = { | |||||
| 'weight': iter([item for item in params_dict.items() if item[0].endswith('weight')]), | |||||
| 'bias': iter([item for item in params_dict.items() if item[0].endswith('bias')]), | |||||
| 'gamma': iter([item for item in params_dict.items() if item[0].endswith('gamma')]), | |||||
| 'beta': iter([item for item in params_dict.items() if item[0].endswith('beta')]), | |||||
| 'moving_mean': iter([item for item in params_dict.items() if item[0].endswith('moving_mean')]), | |||||
| 'moving_variance': iter( | |||||
| [item for item in params_dict.items() if item[0].endswith('moving_variance')]), | |||||
| 'minq': iter([item for item in params_dict.items() if item[0].endswith('minq')]), | |||||
| 'maxq': iter([item for item in params_dict.items() if item[0].endswith('maxq')]) | |||||
| } | |||||
| for name, param in model.parameters_and_names(): | |||||
| key_name = name.split(".")[-1] | |||||
| if key_name not in iterable_dict.keys(): | |||||
| continue | |||||
| value_param = next(iterable_dict[key_name], None) | |||||
| if value_param is not None: | |||||
| param.set_parameter_data(value_param[1].data) | |||||
| print(f'init model param {name} with checkpoint param {value_param[0]}') | |||||
| @@ -0,0 +1,153 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Train Resnet50 on ImageNet""" | |||||
| import os | |||||
| import argparse | |||||
| from mindspore import context | |||||
| from mindspore import Tensor | |||||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||||
| from mindspore.nn.optim.momentum import Momentum | |||||
| from mindspore.train.model import Model, ParallelMode | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||||
| from mindspore.train.serialization import load_checkpoint | |||||
| from mindspore.train.quant import quant | |||||
| from mindspore.communication.management import init | |||||
| import mindspore.nn as nn | |||||
| import mindspore.common.initializer as weight_init | |||||
| from models.resnet_quant import resnet50_quant | |||||
| from src.dataset import create_dataset | |||||
| from src.lr_generator import get_lr | |||||
| from src.config import quant_set, config_quant, config_noquant | |||||
| from src.crossentropy import CrossEntropy | |||||
| from src.utils import _load_param_into_net | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path') | |||||
| args_opt = parser.parse_args() | |||||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||||
| if args_opt.device_target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| rank_id = int(os.getenv('RANK_ID')) | |||||
| rank_size = int(os.getenv('RANK_SIZE')) | |||||
| run_distribute = rank_size > 1 | |||||
| context.set_context(mode=context.GRAPH_MODE, | |||||
| device_target="Ascend", | |||||
| save_graphs=False, | |||||
| device_id=device_id, | |||||
| enable_auto_mixed_precision=True) | |||||
| else: | |||||
| raise ValueError("Unsupported device target.") | |||||
| if __name__ == '__main__': | |||||
| # train on ascend | |||||
| print("training args: {}".format(args_opt)) | |||||
| print("training configure: {}".format(config)) | |||||
| print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) | |||||
| epoch_size = config.epoch_size | |||||
| # distribute init | |||||
| if run_distribute: | |||||
| context.set_auto_parallel_context(device_num=rank_size, | |||||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| parameter_broadcast=True, | |||||
| mirror_mean=True) | |||||
| init() | |||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, | |||||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) | |||||
| # define network | |||||
| net = resnet50_quant(class_num=config.class_num) | |||||
| net.set_train(True) | |||||
| # weight init and load checkpoint file | |||||
| if args_opt.pre_trained: | |||||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||||
| _load_param_into_net(net, param_dict) | |||||
| epoch_size = config.epoch_size - config.pretrained_epoch_size | |||||
| else: | |||||
| for _, cell in net.cells_and_names(): | |||||
| if isinstance(cell, nn.Conv2d): | |||||
| cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), | |||||
| cell.weight.default_input.shape, | |||||
| cell.weight.default_input.dtype).to_tensor() | |||||
| if isinstance(cell, nn.Dense): | |||||
| cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), | |||||
| cell.weight.default_input.shape, | |||||
| cell.weight.default_input.dtype).to_tensor() | |||||
| if not config.use_label_smooth: | |||||
| config.label_smooth_factor = 0.0 | |||||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | |||||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | |||||
| # define dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=True, | |||||
| repeat_num=epoch_size, | |||||
| batch_size=config.batch_size, | |||||
| target=args_opt.device_target) | |||||
| step_size = dataset.get_dataset_size() | |||||
| if quant_set.quantization_aware: | |||||
| # convert fusion network to quantization aware network | |||||
| net = quant.convert_quant_network(net, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) | |||||
| # get learning rate | |||||
| lr = get_lr(lr_init=config.lr_init, | |||||
| lr_end=0.0, | |||||
| lr_max=config.lr_max, | |||||
| warmup_epochs=config.warmup_epochs, | |||||
| total_epochs=config.epoch_size, | |||||
| steps_per_epoch=step_size, | |||||
| lr_decay_mode='cosine') | |||||
| if args_opt.pre_trained: | |||||
| lr = lr[config.pretrained_epoch_size * step_size:] | |||||
| lr = Tensor(lr) | |||||
| # define optimization | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | |||||
| config.weight_decay, config.loss_scale) | |||||
| # define model | |||||
| if quant_set.quantization_aware: | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}) | |||||
| else: | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, | |||||
| amp_level="O2") | |||||
| print("============== Starting Training ==============") | |||||
| time_callback = TimeMonitor(data_size=step_size) | |||||
| loss_callback = LossMonitor() | |||||
| callbacks = [time_callback, loss_callback] | |||||
| if rank_id == 0: | |||||
| if config.save_checkpoint: | |||||
| config_ckpt = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||||
| ckpt_callback = ModelCheckpoint(prefix="ResNet50", | |||||
| directory=config.save_checkpoint_path, | |||||
| config=config_ckpt) | |||||
| callbacks += [ckpt_callback] | |||||
| model.train(epoch_size, dataset, callbacks=callbacks) | |||||
| print("============== End Training ==============") | |||||