|
|
|
@@ -19,6 +19,7 @@ import pytest |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.common import dtype as mstype |
|
|
|
from mindspore.common.api import ms_function |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.ops.operations import _grad_ops as G |
|
|
|
@@ -38,7 +39,7 @@ class StridedSliceGrad(nn.Cell): |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.platform_x86_cpu |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_slice(): |
|
|
|
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32)) |
|
|
|
@@ -47,3 +48,29 @@ def test_slice(): |
|
|
|
output = ssg(dy, x) |
|
|
|
expect = [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[5, 1, 5], [6, 1, 8]]] |
|
|
|
assert (output.asnumpy() == expect).all() |
|
|
|
|
|
|
|
|
|
|
|
class StridedSliceGrad2(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(StridedSliceGrad2, self).__init__() |
|
|
|
self.ssg = G.StridedSliceGrad() |
|
|
|
self.shape = P.Shape() |
|
|
|
|
|
|
|
@ms_function |
|
|
|
def construct(self, dy, x): |
|
|
|
return self.ssg(dy, self.shape(x), (0, 0, 0), (1, 4, 2), (1, 1, 1)) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_slice2(): |
|
|
|
x = Tensor(np.arange(2 * 4 * 2).reshape(2, 4, 2), mstype.float32) |
|
|
|
dy = Tensor(np.arange(4 * 2).reshape(4, 2), mstype.float32) |
|
|
|
ssg = StridedSliceGrad2() |
|
|
|
output = ssg(dy, x) |
|
|
|
expect = [[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]] |
|
|
|
assert (output.asnumpy() == expect).all() |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
test_slice() |
|
|
|
test_slice2() |