| @@ -151,6 +151,84 @@ class One(Initializer): | |||
| _assignment(arr, 1) | |||
| def _calculate_fan_in_and_fan_out(shape): | |||
| """ | |||
| calculate fan_in and fan_out | |||
| Args: | |||
| shape (tuple): input shape. | |||
| Returns: | |||
| Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`. | |||
| """ | |||
| dimensions = len(shape) | |||
| if dimensions < 2: | |||
| raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") | |||
| if dimensions == 2: # Linear | |||
| fan_in = shape[1] | |||
| fan_out = shape[0] | |||
| else: | |||
| num_input_fmaps = shape[1] | |||
| num_output_fmaps = shape[0] | |||
| receptive_field_size = 1 | |||
| if dimensions > 2: | |||
| receptive_field_size = shape[2] * shape[3] | |||
| fan_in = num_input_fmaps * receptive_field_size | |||
| fan_out = num_output_fmaps * receptive_field_size | |||
| return fan_in, fan_out | |||
| def _calculate_correct_fan(shape, mode): | |||
| """ | |||
| Calculate fan. | |||
| Args: | |||
| shape (tuple): input shape. | |||
| mode (str): only support fan_in and fan_out. | |||
| Returns: | |||
| fan_in or fan_out. | |||
| """ | |||
| mode = mode.lower() | |||
| valid_modes = ['fan_in', 'fan_out'] | |||
| if mode not in valid_modes: | |||
| raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) | |||
| fan_in, fan_out = _calculate_fan_in_and_fan_out(shape) | |||
| return fan_in if mode == 'fan_in' else fan_out | |||
| def _calculate_gain(nonlinearity, param=None): | |||
| """ | |||
| Calculate gain. | |||
| Args: | |||
| nonlinearity (str): nonlinearity function. | |||
| param (str): used to calculate negative_slope. | |||
| Returns: | |||
| number. | |||
| """ | |||
| linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] | |||
| if nonlinearity in linear_fns or nonlinearity == 'sigmoid': | |||
| res = 1 | |||
| elif nonlinearity == 'tanh': | |||
| res = 5.0 / 3 | |||
| elif nonlinearity == 'relu': | |||
| res = math.sqrt(2.0) | |||
| elif nonlinearity == 'leaky_relu': | |||
| if param is None: | |||
| negative_slope = 0.01 | |||
| elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): | |||
| # True/False are instances of int, hence check above | |||
| negative_slope = param | |||
| else: | |||
| raise ValueError("negative_slope {} not a valid number".format(param)) | |||
| res = math.sqrt(2.0 / (1 + negative_slope ** 2)) | |||
| else: | |||
| raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) | |||
| return res | |||
| def _calculate_in_and_out(arr): | |||
| """ | |||
| Calculate n_in and n_out. | |||
| @@ -223,6 +301,35 @@ class HeUniform(Initializer): | |||
| _assignment(arr, data) | |||
| @_register('he_normal') | |||
| class HeNormal(Initializer): | |||
| r""" | |||
| Initialize the array with He kaiming Normal algorithm, and from a normal distribution collect samples within | |||
| N(0, sigma). | |||
| Args: | |||
| negative_slope (int, float, bool): Default: 0, used when nonlinearity is 'leaky_relu'. | |||
| mode (str): Default: fan_in. | |||
| nonlinearity (str): Default: leaky_relu. | |||
| Returns: | |||
| Array, assigned array. | |||
| """ | |||
| def __init__(self, negative_slope=0, mode='fan_in', nonlinearity='leaky_relu'): | |||
| super(HeNormal, self).__init__(negative_slope=negative_slope, mode=mode, nonlinearity=nonlinearity) | |||
| self.negative_slope = negative_slope | |||
| self.mode = mode | |||
| self.nonlinearity = nonlinearity | |||
| def _initialize(self, arr): | |||
| fan = _calculate_correct_fan(arr.shape, self.mode) | |||
| gain = _calculate_gain(self.nonlinearity, self.negative_slope) | |||
| std = gain / math.sqrt(fan) | |||
| data = np.random.normal(0, std, arr.shape) | |||
| _assignment(arr, data) | |||
| class Constant(Initializer): | |||
| """ | |||
| Initialize a constant. | |||
| @@ -372,6 +479,7 @@ __all__ = [ | |||
| 'Normal', | |||
| 'Uniform', | |||
| 'HeUniform', | |||
| 'HeNormal', | |||
| 'XavierUniform', | |||
| 'One', | |||
| 'Zero', | |||