|
|
|
@@ -0,0 +1,75 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""Test high order grad with respect to parameter first, then input.""" |
|
|
|
|
|
|
|
import pytest |
|
|
|
import numpy as np |
|
|
|
import mindspore.nn as nn |
|
|
|
import mindspore.ops as ops |
|
|
|
from mindspore import Tensor, context |
|
|
|
from mindspore import ParameterTuple, Parameter |
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(Net, self).__init__() |
|
|
|
self.mul = ops.Mul() |
|
|
|
weight_np = np.array([2, 2]).astype(np.float32) |
|
|
|
self.weight = Parameter(Tensor(weight_np), name="weight", requires_grad=True) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x_square = self.mul(x, x) |
|
|
|
x_square_z = self.mul(x_square, self.weight) |
|
|
|
output = self.mul(x_square_z, self.weight) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
class Grad(nn.Cell): |
|
|
|
def __init__(self, network): |
|
|
|
super(Grad, self).__init__() |
|
|
|
self.grad = ops.GradOperation(get_by_list=True, sens_param=False) |
|
|
|
self.network = network |
|
|
|
self.params = ParameterTuple(network.trainable_params()) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
output = self.grad(self.network, self.params)(x) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
class GradSec(nn.Cell): |
|
|
|
def __init__(self, network): |
|
|
|
super(GradSec, self).__init__() |
|
|
|
self.grad = ops.GradOperation(get_all=True, sens_param=False) |
|
|
|
self.network = network |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
output = self.grad(self.network)(x) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_sit_high_order_grad_params(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
x = Tensor(np.array([1, 1]).astype(np.float32)) |
|
|
|
net = Net() |
|
|
|
first_grad = Grad(net) |
|
|
|
second_grad = GradSec(first_grad) |
|
|
|
grad = second_grad(x) |
|
|
|
assert (grad[0].asnumpy() == np.array([8, 8])).all() |