Browse Source

!10303 ps cache support save checkpoint

From: @zyli2020
Reviewed-by: 
Signed-off-by:
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
5d94eaff21
10 changed files with 149 additions and 29 deletions
  1. +1
    -1
      mindspore/ccsrc/pipeline/jit/pipeline.cc
  2. +2
    -2
      mindspore/ccsrc/ps/parameter_server.h
  3. +12
    -11
      mindspore/ccsrc/ps/ps_cache/embedding_hash_map.cc
  4. +8
    -6
      mindspore/ccsrc/ps/ps_cache/embedding_hash_map.h
  5. +103
    -2
      mindspore/ccsrc/ps/ps_cache/ps_cache_manager.cc
  6. +3
    -1
      mindspore/ccsrc/ps/ps_cache/ps_cache_manager.h
  7. +1
    -0
      mindspore/ccsrc/utils/utils.h
  8. +2
    -1
      mindspore/nn/layer/embedding.py
  9. +8
    -4
      model_zoo/official/recommend/wide_and_deep/train_and_eval_parameter_server_distribute.py
  10. +9
    -1
      model_zoo/official/recommend/wide_and_deep/train_and_eval_parameter_server_standalone.py

+ 1
- 1
mindspore/ccsrc/pipeline/jit/pipeline.cc View File

@@ -1085,10 +1085,10 @@ void ClearResAtexit() {
session::ClearPythonParasMap(); session::ClearPythonParasMap();
#if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU)) #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
if (ps::Util::IsParamServerMode() && ps::Util::IsRoleOfWorker()) { if (ps::Util::IsParamServerMode() && ps::Util::IsRoleOfWorker()) {
ps::worker.Finalize();
if (ps::PsDataPrefetch::GetInstance().cache_enable()) { if (ps::PsDataPrefetch::GetInstance().cache_enable()) {
ps::ps_cache_instance.Finalize(); ps::ps_cache_instance.Finalize();
} }
ps::worker.Finalize();
} }
#endif #endif
ad::g_k_prims.clear(); ad::g_k_prims.clear();


+ 2
- 2
mindspore/ccsrc/ps/parameter_server.h View File

@@ -552,7 +552,6 @@ template <typename T>
void ParameterServer<T>::Finalize() { void ParameterServer<T>::Finalize() {
running_ = false; running_ = false;
apply_grads_cv_.notify_one(); apply_grads_cv_.notify_one();
SyncEmbeddingTables();
} }
template <typename T> template <typename T>
@@ -774,7 +773,7 @@ void ParameterServer<T>::GetEmbeddingTableParamPtr() {
for (auto cnode : cnodes) { for (auto cnode : cnodes) {
MS_EXCEPTION_IF_NULL(cnode); MS_EXCEPTION_IF_NULL(cnode);
std::string cnode_name = AnfAlgo::GetCNodeName(cnode); std::string cnode_name = AnfAlgo::GetCNodeName(cnode);
if (cnode_name == kEmbeddingLookupOpName) {
if (cnode_name == kEmbeddingLookupOpName || cnode_name == kGatherV2OpName) {
auto embedding_table = AnfAlgo::GetInputNode(cnode, 0); auto embedding_table = AnfAlgo::GetInputNode(cnode, 0);
MS_EXCEPTION_IF_NULL(embedding_table); MS_EXCEPTION_IF_NULL(embedding_table);
MS_LOG(INFO) << "Embedding table name is " << embedding_table->fullname_with_scope() << ", key is " << count; MS_LOG(INFO) << "Embedding table name is " << embedding_table->fullname_with_scope() << ", key is " << count;
@@ -832,6 +831,7 @@ void ParameterServer<T>::Run(const FuncGraphPtr &func_graph) {
Init(func_graph); Init(func_graph);
PSContext::instance()->SetPSRankId(rank_id_); PSContext::instance()->SetPSRankId(rank_id_);
thread_->join(); thread_->join();
SyncEmbeddingTables();
MS_LOG(INFO) << "PServer finished updating models, starts finalizing..."; MS_LOG(INFO) << "PServer finished updating models, starts finalizing...";
::ps::Finalize(0, true); ::ps::Finalize(0, true);
MS_LOG(INFO) << "PServer finalized successfully."; MS_LOG(INFO) << "PServer finalized successfully.";


+ 12
- 11
mindspore/ccsrc/ps/ps_cache/embedding_hash_map.cc View File

@@ -30,21 +30,21 @@ int EmbeddingHashMap::ParseData(const int id, int *swap_out_index, int *swap_out
if (loop++ == hash_capacity_) { if (loop++ == hash_capacity_) {
return INVALID_INDEX_VALUE; return INVALID_INDEX_VALUE;
} }
if (hash_map_unit_[hash_index].IsEmpty()) {
if (hash_map_elements_[hash_index].IsEmpty()) {
hash_count_++; hash_count_++;
(void)hash_id_to_index_.emplace(id, hash_index); (void)hash_id_to_index_.emplace(id, hash_index);
hash_map_unit_[hash_index].set_id(id);
hash_map_unit_[hash_index].set_step(data_step);
hash_map_elements_[hash_index].set_id(id);
hash_map_elements_[hash_index].set_step(data_step);
return hash_index; return hash_index;
} else if (need_swap && hash_map_unit_[hash_index].IsExpired(graph_running_step)) {
} else if (need_swap && hash_map_elements_[hash_index].IsExpired(graph_running_step)) {
// Need swap out from the hash table. // Need swap out from the hash table.
swap_out_index[*swap_out_size] = hash_index; swap_out_index[*swap_out_size] = hash_index;
swap_out_ids[*swap_out_size] = hash_map_unit_[hash_index].id_;
swap_out_ids[*swap_out_size] = hash_map_elements_[hash_index].id_;
(*swap_out_size)++; (*swap_out_size)++;
(void)hash_id_to_index_.erase(hash_map_unit_[hash_index].id_);
(void)hash_id_to_index_.erase(hash_map_elements_[hash_index].id_);
(void)hash_id_to_index_.emplace(id, hash_index); (void)hash_id_to_index_.emplace(id, hash_index);
hash_map_unit_[hash_index].set_id(id);
hash_map_unit_[hash_index].set_step(data_step);
hash_map_elements_[hash_index].set_id(id);
hash_map_elements_[hash_index].set_step(data_step);
return hash_index; return hash_index;
} }
hash_index = (hash_index + 1) % hash_capacity_; hash_index = (hash_index + 1) % hash_capacity_;
@@ -58,9 +58,10 @@ void EmbeddingHashMap::DumpHashMap() {
MS_LOG(INFO) << " id: " << iter->first << " index: " << iter->second; MS_LOG(INFO) << " id: " << iter->first << " index: " << iter->second;
} }
MS_LOG(INFO) << "Dump hash_map_unit: "; MS_LOG(INFO) << "Dump hash_map_unit: ";
for (size_t i = 0; i < hash_map_unit_.size(); i++) {
if (!hash_map_unit_[i].IsEmpty()) {
MS_LOG(INFO) << " index: " << i << " id: " << hash_map_unit_[i].id_ << " step: " << hash_map_unit_[i].step_;
for (size_t i = 0; i < hash_map_elements_.size(); i++) {
if (!hash_map_elements_[i].IsEmpty()) {
MS_LOG(INFO) << " index: " << i << " id: " << hash_map_elements_[i].id_
<< " step: " << hash_map_elements_[i].step_;
} }
} }
MS_LOG(INFO) << "Dump hash map info end."; MS_LOG(INFO) << "Dump hash map info end.";


+ 8
- 6
mindspore/ccsrc/ps/ps_cache/embedding_hash_map.h View File

@@ -30,8 +30,8 @@ static const size_t INVALID_STEP_VALUE = 0;
static const int INVALID_INDEX_VALUE = -1; static const int INVALID_INDEX_VALUE = -1;


struct HashMapElement { struct HashMapElement {
int id_;
size_t step_;
int id_{INVALID_INDEX_VALUE};
size_t step_{INVALID_STEP_VALUE};
bool IsEmpty() const { return step_ == INVALID_STEP_VALUE; } bool IsEmpty() const { return step_ == INVALID_STEP_VALUE; }
bool IsExpired(size_t graph_running_step) const { return graph_running_step > step_; } bool IsExpired(size_t graph_running_step) const { return graph_running_step > step_; }
void set_id(int id) { id_ = id; } void set_id(int id) { id_ = id; }
@@ -42,7 +42,7 @@ struct HashMapElement {
class EmbeddingHashMap { class EmbeddingHashMap {
public: public:
EmbeddingHashMap(size_t hash_count, size_t hash_capacity) : hash_count_(hash_count), hash_capacity_(hash_capacity) { EmbeddingHashMap(size_t hash_count, size_t hash_capacity) : hash_count_(hash_count), hash_capacity_(hash_capacity) {
hash_map_unit_.resize(hash_capacity);
hash_map_elements_.resize(hash_capacity);
} }
virtual ~EmbeddingHashMap() = default; virtual ~EmbeddingHashMap() = default;
int ParseData(const int id, int *swap_out_index, int *swap_out_ids, const size_t data_step, int ParseData(const int id, int *swap_out_index, int *swap_out_ids, const size_t data_step,
@@ -51,8 +51,10 @@ class EmbeddingHashMap {
bool IsIdExist(const std::unordered_map<int, int>::const_iterator iter) const { bool IsIdExist(const std::unordered_map<int, int>::const_iterator iter) const {
return iter != hash_id_to_index_.end(); return iter != hash_id_to_index_.end();
} }
size_t hash_step(const int hash_index) const { return hash_map_unit_[hash_index].step_; }
void set_hash_step(const int hash_index, const size_t step) { hash_map_unit_[hash_index].set_step(step); }
size_t hash_step(const int hash_index) const { return hash_map_elements_[hash_index].step_; }
void set_hash_step(const int hash_index, const size_t step) { hash_map_elements_[hash_index].set_step(step); }
const std::unordered_map<int, int> &hash_id_to_index() const { return hash_id_to_index_; }
size_t hash_capacity() const { return hash_capacity_; }
void DumpHashMap(); void DumpHashMap();


private: private:
@@ -60,7 +62,7 @@ class EmbeddingHashMap {
bool NeedSwap() const { return hash_count_ > FloatToSize(hash_capacity_ * 0.9); } bool NeedSwap() const { return hash_count_ > FloatToSize(hash_capacity_ * 0.9); }
size_t hash_count_; size_t hash_count_;
size_t hash_capacity_; size_t hash_capacity_;
std::vector<HashMapElement> hash_map_unit_;
std::vector<HashMapElement> hash_map_elements_;
std::unordered_map<int, int> hash_id_to_index_; std::unordered_map<int, int> hash_id_to_index_;
}; };
} // namespace ps } // namespace ps


+ 103
- 2
mindspore/ccsrc/ps/ps_cache/ps_cache_manager.cc View File

@@ -226,9 +226,9 @@ void PsCacheManager::AllocMemForHashTable() {
device_address.addr = addr; device_address.addr = addr;


auto &host_address = item.second.host_address; auto &host_address = item.second.host_address;
auto host_address_ptr = new int[host_cache_vocab_size_ * embedding_size];
auto host_address_ptr = new float[host_cache_vocab_size_ * embedding_size];
MS_EXCEPTION_IF_NULL(host_address_ptr); MS_EXCEPTION_IF_NULL(host_address_ptr);
host_address = std::shared_ptr<int[]>(host_address_ptr, std::default_delete<int[]>());
host_address = std::shared_ptr<float[]>(host_address_ptr, std::default_delete<float[]>());
MS_EXCEPTION_IF_NULL(host_address); MS_EXCEPTION_IF_NULL(host_address);


max_embedding_size = (embedding_size > max_embedding_size) ? embedding_size : max_embedding_size; max_embedding_size = (embedding_size > max_embedding_size) ? embedding_size : max_embedding_size;
@@ -330,6 +330,14 @@ void PsCacheManager::ProcessDataTask(uint32_t device_id, void *context) {
} }


void PsCacheManager::Finalize() { void PsCacheManager::Finalize() {
if (running_) {
if (!SyncHostEmbeddingTable()) {
MS_LOG(ERROR) << "SyncHostEmbeddingTable failed.";
}
if (!SyncDeviceEmbeddingTable()) {
MS_LOG(ERROR) << "SyncDeviceEmbeddingTable failed.";
}
}
running_ = false; running_ = false;
PsDataPrefetch::GetInstance().NotifyFinalize(); PsDataPrefetch::GetInstance().NotifyFinalize();
insert_init_info_.notify_all(); insert_init_info_.notify_all();
@@ -838,6 +846,99 @@ bool PsCacheManager::UpdataEmbeddingTable(const ::ps::SArray<float> &swap_out_da
return true; return true;
} }


bool PsCacheManager::SyncHostEmbeddingTable() {
MS_ERROR_IF_NULL(embedding_host_cache_);
const auto &hash_id_to_index = embedding_host_cache_->host_hash_map_->hash_id_to_index();
size_t swap_indices_lens = hash_id_to_index.size();
if (swap_indices_lens == 0) {
return true;
}
std::unique_ptr<int[]> host_to_server_ids_ptr = std::make_unique<int[]>(swap_indices_lens);
MS_ERROR_IF_NULL(host_to_server_ids_ptr);
std::unique_ptr<int[]> host_to_server_indices_ptr = std::make_unique<int[]>(swap_indices_lens);
MS_ERROR_IF_NULL(host_to_server_indices_ptr);
size_t idx = 0;
for (const auto &item : hash_id_to_index) {
host_to_server_ids_ptr[idx] = item.first;
host_to_server_indices_ptr[idx++] = item.second;
}
for (const auto &item : hash_tables_) {
const auto &hash_info = item.second;
if (hash_info.param_init_info_.param_type_ != kWeight) {
continue;
}
auto key = worker.GetParamKey(item.first);
::ps::SArray<int> lookup_ids(swap_indices_lens, 0);
::ps::SArray<float> swap_out_data;
auto embedding_size = hash_info.embedding_size;
swap_out_data.resize(swap_indices_lens * embedding_size);
auto host_hash_table_addr = hash_info.host_address.get();
MS_ERROR_IF_NULL(host_hash_table_addr);
RETURN_IF_FALSE(LookUpHostHashTable(embedding_size, swap_indices_lens, host_hash_table_addr,
host_to_server_indices_ptr.get(), swap_out_data.data()));

auto copy_len = swap_indices_lens * sizeof(int);
auto ret = memcpy_s(lookup_ids.data(), copy_len, host_to_server_ids_ptr.get(), copy_len);
if (ret != EOK) {
MS_LOG(ERROR) << "Lookup id memcpy failed.";
return false;
}
worker.UpdateEmbeddingTable({key}, lookup_ids, swap_out_data);
}
return true;
}

bool PsCacheManager::SyncDeviceEmbeddingTable() {
MS_ERROR_IF_NULL(embedding_device_cache_);
const auto &device_hash_map = embedding_device_cache_->device_hash_map_;
const auto &hash_id_to_index = device_hash_map->hash_id_to_index();
size_t swap_indices_lens = hash_id_to_index.size();
if (swap_indices_lens == 0) {
return true;
}
std::unique_ptr<int[]> device_to_server_ids_ptr = std::make_unique<int[]>(swap_indices_lens);
MS_ERROR_IF_NULL(device_to_server_ids_ptr);
std::unique_ptr<int[]> device_to_server_indices_ptr = std::make_unique<int[]>(swap_indices_lens);
MS_ERROR_IF_NULL(device_to_server_indices_ptr);
size_t idx = 0;
for (const auto &item : hash_id_to_index) {
device_to_server_ids_ptr[idx] = item.first;
device_to_server_indices_ptr[idx++] = item.second;
}
for (const auto &item : hash_tables_) {
const auto &hash_info = item.second;
if (hash_info.param_init_info_.param_type_ != kWeight) {
continue;
}
auto key = worker.GetParamKey(item.first);
::ps::SArray<int> lookup_ids(swap_indices_lens, 0);
::ps::SArray<float> swap_out_data;
auto embedding_size = hash_info.embedding_size;
swap_out_data.resize(swap_indices_lens * embedding_size);
std::unique_ptr<float[]> device_hash_table_addr_tmp =
std::make_unique<float[]>(device_hash_map->hash_capacity() * embedding_size);
MS_ERROR_IF_NULL(device_hash_table_addr_tmp);

auto hash_table_addr = reinterpret_cast<float *>(hash_info.device_address.addr);
MS_ERROR_IF_NULL(hash_table_addr);
auto hash_table_size = hash_info.device_address.size;
RETURN_IF_FALSE(embedding_device_cache_->cache_->CopyDeviceMemToHost(device_hash_table_addr_tmp.get(),
hash_table_addr, hash_table_size));
RETURN_IF_FALSE(embedding_device_cache_->cache_->SynchronizeStream());
RETURN_IF_FALSE(LookUpHostHashTable(embedding_size, swap_indices_lens, device_hash_table_addr_tmp.get(),
device_to_server_indices_ptr.get(), swap_out_data.data()));

auto copy_len = swap_indices_lens * sizeof(int);
auto ret = memcpy_s(lookup_ids.data(), copy_len, device_to_server_ids_ptr.get(), copy_len);
if (ret != EOK) {
MS_LOG(ERROR) << "Lookup id memcpy failed.";
return false;
}
worker.UpdateEmbeddingTable({key}, lookup_ids, swap_out_data);
}
return true;
}

void PsCacheManager::DumpHashTables(bool dump_device_tables) const { void PsCacheManager::DumpHashTables(bool dump_device_tables) const {
for (const auto &item : hash_tables_) { for (const auto &item : hash_tables_) {
const auto &param_name = item.first; const auto &param_name = item.first;


+ 3
- 1
mindspore/ccsrc/ps/ps_cache/ps_cache_manager.h View File

@@ -48,7 +48,7 @@ struct HashTableInfo {
size_t embedding_size{0}; size_t embedding_size{0};
size_t vocab_size{0}; size_t vocab_size{0};
Address device_address{nullptr, 0}; Address device_address{nullptr, 0};
std::shared_ptr<int[]> host_address{nullptr};
std::shared_ptr<float[]> host_address{nullptr};
ParamInitInfo param_init_info_; ParamInitInfo param_init_info_;
}; };


@@ -166,6 +166,8 @@ class PsCacheManager {
bool CheckFinishInsertInitInfo() const; bool CheckFinishInsertInitInfo() const;
void AddEmbeddingTable() const; void AddEmbeddingTable() const;
void DumpStatisticsInfo(size_t each_print_step = 1000); void DumpStatisticsInfo(size_t each_print_step = 1000);
bool SyncHostEmbeddingTable();
bool SyncDeviceEmbeddingTable();


bool initialized_ps_cache_{false}; bool initialized_ps_cache_{false};
std::string channel_name_; std::string channel_name_;


+ 1
- 0
mindspore/ccsrc/utils/utils.h View File

@@ -205,6 +205,7 @@ constexpr auto kPushOpName = "Push";
constexpr auto kPullOpName = "Pull"; constexpr auto kPullOpName = "Pull";
constexpr auto kEmbeddingLookupOpName = "EmbeddingLookup"; constexpr auto kEmbeddingLookupOpName = "EmbeddingLookup";
constexpr auto kEmbeddingLookupProxyOpName = "EmbeddingLookupProxy"; constexpr auto kEmbeddingLookupProxyOpName = "EmbeddingLookupProxy";
constexpr auto kGatherV2OpName = "GatherV2";
constexpr auto kPaddingOpName = "Padding"; constexpr auto kPaddingOpName = "Padding";
constexpr auto kAvgPoolOpName = "AvgPool"; constexpr auto kAvgPoolOpName = "AvgPool";
constexpr auto kAvgPoolGradGpuOpName = "AvgPoolGradGpu"; constexpr auto kAvgPoolGradGpuOpName = "AvgPoolGradGpu";


+ 2
- 1
mindspore/nn/layer/embedding.py View File

@@ -292,7 +292,8 @@ class EmbeddingLookup(Cell):
"in 'full_batch' and 'table_row_slice' parallel strategy.") "in 'full_batch' and 'table_row_slice' parallel strategy.")
self.vocab_cache_size = self.vocab_cache_size * device_num self.vocab_cache_size = self.vocab_cache_size * device_num
self.cache_enable = True self.cache_enable = True
self.vocab_size = self.vocab_cache_size
if _is_role_worker():
self.vocab_size = self.vocab_cache_size


def _set_voacb_cache_enable(self, vocab_cache_size, embedding_size, vocab_size): def _set_voacb_cache_enable(self, vocab_cache_size, embedding_size, vocab_size):
"""PS embeddingLookup cache enable set.""" """PS embeddingLookup cache enable set."""


+ 8
- 4
model_zoo/official/recommend/wide_and_deep/train_and_eval_parameter_server_distribute.py View File

@@ -24,6 +24,7 @@ from mindspore.context import ParallelMode
from mindspore.communication.management import get_rank, get_group_size, init from mindspore.communication.management import get_rank, get_group_size, init
from mindspore.nn.wrap.cell_wrapper import VirtualDatasetCellTriple from mindspore.nn.wrap.cell_wrapper import VirtualDatasetCellTriple
from mindspore.common import set_seed from mindspore.common import set_seed
from mindspore.parallel._ps_context import _is_role_worker


from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack from src.callbacks import LossCallBack, EvalCallBack
@@ -117,11 +118,14 @@ def train_and_eval(config):
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config) eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)


callback = LossCallBack(config=config) callback = LossCallBack(config=config)
if cache_enable:
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size()*epochs,
keep_checkpoint_max=5, integrated_save=False)
if _is_role_worker():
if cache_enable:
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size()*epochs,
keep_checkpoint_max=1, integrated_save=False)
else:
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
else: else:
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
ckptconfig = CheckpointConfig(save_checkpoint_steps=1, keep_checkpoint_max=1)
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
directory=config.ckpt_path + '/ckpt_' + str(get_rank()) + '/', directory=config.ckpt_path + '/ckpt_' + str(get_rank()) + '/',
config=ckptconfig) config=ckptconfig)


+ 9
- 1
model_zoo/official/recommend/wide_and_deep/train_and_eval_parameter_server_standalone.py View File

@@ -20,6 +20,7 @@ import sys
from mindspore import Model, context from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.common import set_seed from mindspore.common import set_seed
from mindspore.parallel._ps_context import _is_role_worker


from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack from src.callbacks import LossCallBack, EvalCallBack
@@ -99,7 +100,14 @@ def train_and_eval(config):


eval_callback = EvalCallBack(model, ds_eval, auc_metric, config) eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
callback = LossCallBack(config=config) callback = LossCallBack(config=config)
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
if _is_role_worker():
if cache_enable:
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size() * epochs,
keep_checkpoint_max=1)
else:
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
else:
ckptconfig = CheckpointConfig(save_checkpoint_steps=1, keep_checkpoint_max=1)
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=config.ckpt_path, config=ckptconfig) ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=config.ckpt_path, config=ckptconfig)
callback_list = [TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb] callback_list = [TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb]




Loading…
Cancel
Save