Browse Source

fixed range

tags/v0.5.0-beta
jiangjinsheng 5 years ago
parent
commit
5d9421b92c
4 changed files with 6 additions and 5 deletions
  1. +2
    -1
      mindspore/nn/layer/math.py
  2. +1
    -1
      mindspore/nn/layer/normalization.py
  3. +2
    -2
      mindspore/ops/operations/array_ops.py
  4. +1
    -1
      mindspore/ops/operations/nn_ops.py

+ 2
- 1
mindspore/nn/layer/math.py View File

@@ -15,6 +15,7 @@
"""math"""
import math
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
from mindspore.common.tensor import Tensor
from ..cell import Cell
from ...common import dtype as mstype
@@ -114,7 +115,7 @@ class Range(Cell):
limit = float(limit)
if isinstance(delta, int):
delta = float(delta)
self.range_x = P.Range(start, limit, delta)
self.range_x = inner.Range(start, limit, delta)
if limit is None:
length_input = math.ceil(start / delta)
else:


+ 1
- 1
mindspore/nn/layer/normalization.py View File

@@ -375,7 +375,7 @@ class GlobalBatchNorm(_BatchNorm):

Args:
num_features (int): `C` from an expected input of size (N, C, H, W).
device_num_each_group (int): The number of devices in each group.
device_num_each_group (int): The number of devices in each group. Default: 1.
eps (float): A value added to the denominator for numerical stability. Default: 1e-5.
momentum (float): A floating hyperparameter of the momentum for the
running_mean and running_var computation. Default: 0.9.


+ 2
- 2
mindspore/ops/operations/array_ops.py View File

@@ -122,8 +122,8 @@ class SameTypeShape(PrimitiveWithInfer):
Checks whether data type and shape of two tensors are the same.

Raises:
TypeError - If data type not the same.
ValueError - If shape of two tensors not the same.
TypeError: If data type not the same.
ValueError: If shape of two tensors not the same.

Inputs:
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.


+ 1
- 1
mindspore/ops/operations/nn_ops.py View File

@@ -673,7 +673,7 @@ class BatchNorm(PrimitiveWithInfer):
>>> mean = Tensor(np.ones([64]), mindspore.float32)
>>> variance = Tensor(np.ones([64]), mindspore.float32)
>>> batch_norm = P.BatchNorm()
>>> output = batch_norm(input_x, scale, bias, mean, variance
>>> output = batch_norm(input_x, scale, bias, mean, variance)
"""

@prim_attr_register


Loading…
Cancel
Save