| @@ -0,0 +1,51 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import Tensor, context, load_checkpoint, export | |||||
| from src.maskrcnn_mobilenetv1.mask_rcnn_mobilenetv1 import Mask_Rcnn_Mobilenetv1 | |||||
| from src.config import config | |||||
| parser = argparse.ArgumentParser(description="maskrcnn mobilnetv1 export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--file_name", type=str, default="maskrcnn_mobilenetv1", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", | |||||
| help="device target") | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| if __name__ == '__main__': | |||||
| config.test_batch_size = args.batch_size | |||||
| net = Mask_Rcnn_Mobilenetv1(config) | |||||
| load_checkpoint(args.ckpt_file, net=net) | |||||
| net.set_train(False) | |||||
| img_data = Tensor(np.zeros([args.batch_size, 3, config.img_height, config.img_width], np.float16)) | |||||
| img_metas = Tensor(np.zeros([args.batch_size, 4], np.float16)) | |||||
| gt_bboxes = Tensor(np.zeros([args.batch_size, config.num_gts, 4], np.float16)) | |||||
| gt_labels = Tensor(np.zeros([args.batch_size, config.num_gts], np.int32)) | |||||
| gt_num = Tensor(np.zeros([args.batch_size, config.num_gts], np.bool)) | |||||
| gt_mask = Tensor(np.zeros([args.batch_size, 1, 1, 1], np.bool)) | |||||
| input_data = [img_data, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask] | |||||
| export(net, *input_data, file_name=args.file_name, file_format=args.file_format) | |||||
| @@ -0,0 +1,57 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import context, Tensor | |||||
| from mindspore.train.serialization import export, load_checkpoint | |||||
| from src.mobilenet_v1 import mobilenet_v1 as mobilenet | |||||
| parser = argparse.ArgumentParser(description="mobilenetv1 export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--batch_size", type=int, default=256, help="batch size") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--dataset", type=str, default="imagenet2012", help="Dataset, either cifar10 or imagenet2012") | |||||
| parser.add_argument("--file_name", type=str, default="mobilenetv1", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", | |||||
| help="device target") | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) | |||||
| if args.dataset == "cifar10": | |||||
| from src.config import config1 as config | |||||
| else: | |||||
| from src.config import config2 as config | |||||
| if __name__ == "__main__": | |||||
| config.batch_size = args.batch_size | |||||
| target = args.device_target | |||||
| if target != "GPU": | |||||
| context.set_context(device_id=args.device_id) | |||||
| network = mobilenet(class_num=config.class_num) | |||||
| param_dict = load_checkpoint(args.ckpt_file, net=network) | |||||
| network.set_train(False) | |||||
| input_data = Tensor(np.zeros([config.batch_size, 3, 224, 224]).astype(np.float32)) | |||||
| export(network, input_data, file_name=args.file_name, file_format=args.file_format) | |||||
| @@ -0,0 +1,65 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """export ckpt to model""" | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import context, Tensor | |||||
| from mindspore.train.serialization import export, load_checkpoint | |||||
| from src.bgcf import BGCF | |||||
| from src.callback import ForwardBGCF | |||||
| parser = argparse.ArgumentParser(description="bgcf export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--file_name", type=str, default="bgcf", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", | |||||
| help="device target") | |||||
| parser.add_argument("--input_dim", type=int, choices=[64, 128], default=64, help="embedding dimension") | |||||
| parser.add_argument("--embedded_dimension", type=int, default=64, help="output embedding dimension") | |||||
| parser.add_argument("--row_neighs", type=int, default=40, help="num of sampling neighbors in raw graph") | |||||
| parser.add_argument("--gnew_neighs", type=int, default=20, help="num of sampling neighbors in sample graph") | |||||
| parser.add_argument("--activation", type=str, default="tanh", choices=["relu", "tanh"], help="activation function") | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| if __name__ == "__main__": | |||||
| num_user, num_item = 7068, 3570 | |||||
| network = BGCF([args.input_dim, num_user, num_item], | |||||
| args.embedded_dimension, | |||||
| args.activation, | |||||
| [0.0, 0.0, 0.0], | |||||
| num_user, | |||||
| num_item, | |||||
| args.input_dim) | |||||
| load_checkpoint(args.ckpt_file, net=network) | |||||
| forward_net = ForwardBGCF(network) | |||||
| users = Tensor(np.zeros([num_user,]).astype(np.int32)) | |||||
| items = Tensor(np.zeros([num_item,]).astype(np.int32)) | |||||
| neg_items = Tensor(np.zeros([num_item, 1]).astype(np.int32)) | |||||
| u_test_neighs = Tensor(np.zeros([num_user, args.row_neighs]).astype(np.int32)) | |||||
| u_test_gnew_neighs = Tensor(np.zeros([num_user, args.gnew_neighs]).astype(np.int32)) | |||||
| i_test_neighs = Tensor(np.zeros([num_item, args.row_neighs]).astype(np.int32)) | |||||
| i_test_gnew_neighs = Tensor(np.zeros([num_item, args.gnew_neighs]).astype(np.int32)) | |||||
| input_data = [users, items, neg_items, u_test_neighs, u_test_gnew_neighs, i_test_neighs, i_test_gnew_neighs] | |||||
| export(forward_net, *input_data, file_name=args.file_name, file_format=args.file_format) | |||||
| @@ -0,0 +1,50 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """export ckpt to model""" | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import context, Tensor | |||||
| from mindspore.train.serialization import export, load_checkpoint | |||||
| from src.deepfm import ModelBuilder | |||||
| from src.config import DataConfig, ModelConfig, TrainConfig | |||||
| parser = argparse.ArgumentParser(description="deepfm export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--batch_size", type=int, default=16000, help="batch size") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--file_name", type=str, default="deepfm", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", | |||||
| help="device target") | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| if __name__ == "__main__": | |||||
| data_config = DataConfig() | |||||
| model_builder = ModelBuilder(ModelConfig, TrainConfig) | |||||
| _, network = model_builder.get_train_eval_net() | |||||
| load_checkpoint(args.ckpt_file, net=network) | |||||
| batch_ids = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.int32)) | |||||
| batch_wts = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.float32)) | |||||
| labels = Tensor(np.zeros([data_config.batch_size, 1]).astype(np.float32)) | |||||
| input_data = [batch_ids, batch_wts, labels] | |||||
| export(network, *input_data, file_name=args.file_name, file_format=args.file_format) | |||||