|
|
|
@@ -108,10 +108,6 @@ if __name__ == '__main__': |
|
|
|
losses.append(network(feature, label).asnumpy()) |
|
|
|
epoch_mseconds = (time.time()-epoch_start) * 1000 |
|
|
|
per_step_mseconds = epoch_mseconds / step_size |
|
|
|
# lr cause to pynative, but cpu doesn't support this mode |
|
|
|
# print("\r epoch[{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}, lr: {}"\ |
|
|
|
# .format(epoch + 1, step_step, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses)), \ |
|
|
|
# lr[(epoch+1)*step_size - 1]), end="") |
|
|
|
print("\r epoch[{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\ |
|
|
|
.format(epoch + 1, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses))), \ |
|
|
|
end="") |
|
|
|
|