|
|
|
@@ -107,6 +107,32 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, |
|
|
|
logger.info("repeat count: {}".format(ds.get_repeat_count())) |
|
|
|
return ds |
|
|
|
|
|
|
|
|
|
|
|
def _set_bert_all_reduce_split(): |
|
|
|
"""set bert all_reduce fusion split, support num_hidden_layers is 12 and 24.""" |
|
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context |
|
|
|
if bert_net_cfg.num_hidden_layers == 12: |
|
|
|
if bert_net_cfg.use_relative_positions: |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([29, 58, 87, 116, 145, 174, 203, 217], |
|
|
|
"hccl_world_groupsum1") |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([29, 58, 87, 116, 145, 174, 203, 217], |
|
|
|
"hccl_world_groupsum3") |
|
|
|
else: |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205], |
|
|
|
"hccl_world_groupsum1") |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205], |
|
|
|
"hccl_world_groupsum3") |
|
|
|
elif bert_net_cfg.num_hidden_layers == 24: |
|
|
|
if bert_net_cfg.use_relative_positions: |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([30, 90, 150, 210, 270, 330, 390, 421], |
|
|
|
"hccl_world_groupsum1") |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([30, 90, 150, 210, 270, 330, 390, 421], |
|
|
|
"hccl_world_groupsum3") |
|
|
|
else: |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([38, 77], "hccl_world_groupsum1") |
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([38, 77], "hccl_world_groupsum3") |
|
|
|
|
|
|
|
|
|
|
|
def train_process_bert_thor(q, device_id, epoch_size, device_num): |
|
|
|
os.system("mkdir " + str(device_id)) |
|
|
|
os.chdir(str(device_id)) |
|
|
|
@@ -120,10 +146,11 @@ def train_process_bert_thor(q, device_id, epoch_size, device_num): |
|
|
|
D.init() |
|
|
|
rank = device_id % device_num |
|
|
|
context.reset_auto_parallel_context() |
|
|
|
_set_bert_all_reduce_split() |
|
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, |
|
|
|
device_num=device_num) |
|
|
|
|
|
|
|
bert_net_cfg.num_hidden_layers = 2 |
|
|
|
bert_net_cfg.num_hidden_layers = 4 |
|
|
|
ds = create_bert_dataset(device_num=device_num, rank=rank, do_shuffle=False, data_dir=DATASET_PATH, schema_dir=None) |
|
|
|
net_with_loss = BertNetworkWithLoss(bert_net_cfg, True) |
|
|
|
|
|
|
|
@@ -200,8 +227,8 @@ def test_bert_thor_mlperf_8p(): |
|
|
|
os.system("rm -rf " + str(i)) |
|
|
|
|
|
|
|
print("End training...") |
|
|
|
assert mean_cost < 51 |
|
|
|
assert mean_loss < 8.5 |
|
|
|
assert mean_cost < 64.2 |
|
|
|
assert mean_loss < 7.9 |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
test_bert_thor_mlperf_8p() |