|
|
|
@@ -0,0 +1,83 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import mindspore as ms |
|
|
|
from mindspore import context, Tensor, Parameter |
|
|
|
from mindspore.nn import Cell, TrainOneStepCell, Momentum |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.common.api import _executor |
|
|
|
|
|
|
|
|
|
|
|
class Net(Cell): |
|
|
|
def __init__(self, mul_weight, strategy1=None, strategy2=None): |
|
|
|
super().__init__() |
|
|
|
self.mul = P.Mul().set_strategy(strategy1) |
|
|
|
self.loss = P.SigmoidCrossEntropyWithLogits().set_strategy(strategy2) |
|
|
|
self.mul_weight = Parameter(mul_weight, "w1") |
|
|
|
|
|
|
|
def construct(self, x, b): |
|
|
|
out = self.mul(x, self.mul_weight) |
|
|
|
out = self.loss(out, b) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
_x = Tensor(np.ones([128, 64]), dtype=ms.float32) |
|
|
|
_w1 = Tensor(np.ones([128, 64]), dtype=ms.float32) |
|
|
|
_b = Tensor(np.ones([128, 64]), dtype=ms.float32) |
|
|
|
|
|
|
|
|
|
|
|
def compile(net): |
|
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) |
|
|
|
train_net = TrainOneStepCell(net, optimizer) |
|
|
|
_executor.compile(train_net, _x, _b) |
|
|
|
context.reset_auto_parallel_context() |
|
|
|
|
|
|
|
|
|
|
|
def test_sigmoid_cross_entropy_with_logits_data_parallel(): |
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) |
|
|
|
strategy1 = ((16, 1), (16, 1)) |
|
|
|
strategy2 = ((16, 1), (16, 1)) |
|
|
|
net = Net(_w1, strategy1, strategy2) |
|
|
|
compile(net) |
|
|
|
|
|
|
|
|
|
|
|
def test_sigmoid_cross_entropy_with_logits_model_parallel(): |
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) |
|
|
|
strategy1 = ((1, 16), (1, 16)) |
|
|
|
strategy2 = ((1, 16), (1, 16)) |
|
|
|
net = Net(_w1, strategy1, strategy2) |
|
|
|
compile(net) |
|
|
|
|
|
|
|
|
|
|
|
def test_sigmoid_cross_entropy_with_logits_hybrid_parallel(): |
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) |
|
|
|
strategy1 = ((2, 8), (2, 8)) |
|
|
|
strategy2 = ((2, 8), (2, 8)) |
|
|
|
net = Net(_w1, strategy1, strategy2) |
|
|
|
compile(net) |
|
|
|
|
|
|
|
|
|
|
|
def test_sigmoid_cross_entropy_with_logits_auto_parallel(): |
|
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) |
|
|
|
net = Net(_w1) |
|
|
|
compile(net) |
|
|
|
|
|
|
|
|
|
|
|
def test_sigmoid_cross_entropy_with_logits_repeat_calc(): |
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) |
|
|
|
strategy1 = ((2, 8), (2, 8)) |
|
|
|
strategy2 = ((2, 2), (2, 2)) |
|
|
|
net = Net(_w1, strategy1, strategy2) |
|
|
|
compile(net) |