| @@ -91,16 +91,21 @@ __device__ void bin_box(int thread_idx, const T *roi_boxes, int roi_cols, const | |||
| } | |||
| // Scale and shift ROI | |||
| T roi_offset = roi_end_mode == 0 ? static_cast<T>(0.5) : static_cast<T>(.0); | |||
| *roi_start_w = roi_box[0] * spatial_scale - roi_offset; | |||
| *roi_start_h = roi_box[1] * spatial_scale - roi_offset; | |||
| T roi_end_w = roi_box[2] * spatial_scale - roi_offset; | |||
| T roi_end_h = roi_box[3] * spatial_scale - roi_offset; | |||
| *roi_start_w = roi_box[0] * spatial_scale; | |||
| *roi_start_h = roi_box[1] * spatial_scale; | |||
| T roi_end_w = (roi_box[2] + static_cast<T>(roi_end_mode)) * spatial_scale; | |||
| T roi_end_h = (roi_box[3] + static_cast<T>(roi_end_mode)) * spatial_scale; | |||
| // New ROI height/width | |||
| T roi_width = roi_end_w - (*roi_start_w); | |||
| T roi_height = roi_end_h - (*roi_start_h); | |||
| if (roi_end_mode == 0) { // backward compatibility | |||
| // Force malformed ROIs to be 1x1 | |||
| roi_width = roi_width > static_cast<T>(1.0) ? roi_width : static_cast<T>(1.0); | |||
| roi_height = roi_height > static_cast<T>(1.0) ? roi_height : static_cast<T>(1.0); | |||
| } | |||
| // ratio of roi / pooled | |||
| *bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |||
| *bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |||
| @@ -1,78 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| class NetROIAlignGrad(nn.Cell): | |||
| def __init__(self, xdiff_shape, pooled_height, pooled_width, spatial_scale, sample_num): | |||
| super(NetROIAlignGrad, self).__init__() | |||
| self.roiAlignGrad = G.ROIAlignGrad( | |||
| xdiff_shape, | |||
| pooled_height, | |||
| pooled_width, | |||
| spatial_scale, | |||
| sample_num) | |||
| def construct(self, dy, rois): | |||
| return self.roiAlignGrad(dy, rois) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_roi_align_grad_half(): | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float16)) | |||
| dy = Tensor(np.array([[[ | |||
| [.1, .2, .3], | |||
| [.1, .2, .3], | |||
| [.1, .2, .3] | |||
| ]]], np.float16)) | |||
| xdiff_shape = (1, 1, 6, 6) | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| roi_align_grad = NetROIAlignGrad( | |||
| xdiff_shape, | |||
| pooled_height, | |||
| pooled_width, | |||
| spatial_scale, | |||
| sample_num) | |||
| output = roi_align_grad(dy, rois) | |||
| print(output) | |||
| # the out if aligned is True | |||
| # expect = ([[[[0.0563, 0.0563, 0.0750, 0.0938, 0.1125, 0.0563], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0188, 0.0188, 0.0250, 0.0312, 0.0375, 0.0188]]]]) | |||
| expect = ([[[[0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075]]]]) | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||
| @@ -42,37 +42,34 @@ class NetROIAlignGrad(nn.Cell): | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_roi_align_grad(): | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32)) | |||
| def roi_align_grad_case(data_type): | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 21.0, 21.0]], data_type)) | |||
| dy = Tensor(np.array([[[ | |||
| [.1, .2, .3], | |||
| [.1, .2, .3], | |||
| [.1, .2, .3] | |||
| ]]], np.float32)) | |||
| dy = Tensor(np.array([[[ | |||
| [.1, .2, .3], | |||
| [.1, .2, .3], | |||
| [.1, .2, .3] | |||
| ]]], data_type)) | |||
| xdiff_shape = (1, 1, 6, 6) | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| xdiff_shape = (1, 1, 6, 6) | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| roi_align_grad = NetROIAlignGrad( | |||
| xdiff_shape, | |||
| pooled_height, | |||
| pooled_width, | |||
| spatial_scale, | |||
| sample_num) | |||
| output = roi_align_grad(dy, rois) | |||
| print(output) | |||
| # the out if aligned is True | |||
| # expect = ([[[[0.0563, 0.0563, 0.0750, 0.0938, 0.1125, 0.0563], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| # [0.0188, 0.0188, 0.0250, 0.0312, 0.0375, 0.0188]]]]) | |||
| expect = ([[[[0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075]]]]) | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||
| roi_align_grad = NetROIAlignGrad( | |||
| xdiff_shape, | |||
| pooled_height, | |||
| pooled_width, | |||
| spatial_scale, | |||
| sample_num) | |||
| output = roi_align_grad(dy, rois) | |||
| print(output) | |||
| expect = ([[[[0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075], | |||
| [0.025, 0.025, 0.05, 0.05, 0.075, 0.075]]]]) | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||
| roi_align_grad_case(np.float32) | |||
| roi_align_grad_case(np.float16) | |||
| @@ -1,49 +0,0 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_roi_align_half(): | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| x = Tensor(np.array([[ | |||
| [[1, 2, 3, 4, 5, 6], | |||
| [7, 8, 9, 10, 11, 12], | |||
| [13, 14, 15, 16, 17, 18], | |||
| [19, 20, 21, 22, 23, 24], | |||
| [25, 26, 27, 28, 29, 30], | |||
| [31, 32, 33, 34, 35, 36]] | |||
| ]], np.float16)) | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float16)) | |||
| # test case 1 | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 4, 4, 0.2, 3 | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[1.2333, 2.1000, 3.3000, 4.5000], | |||
| [6.4333, 7.3000, 8.5000, 9.7000], | |||
| [13.6333, 14.5000, 15.7000, 16.9000], | |||
| [20.8333, 21.7000, 22.9000, 24.1000]]]] | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=1) | |||
| @@ -25,61 +25,51 @@ from mindspore.ops import operations as P | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_roi_align(): | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| x = Tensor(np.array([[ | |||
| [[1, 2, 3, 4, 5, 6], | |||
| [7, 8, 9, 10, 11, 12], | |||
| [13, 14, 15, 16, 17, 18], | |||
| [19, 20, 21, 22, 23, 24], | |||
| [25, 26, 27, 28, 29, 30], | |||
| [31, 32, 33, 34, 35, 36]] | |||
| ]], np.float32)) | |||
| def roi_align_case(data_type): | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| x = Tensor(np.array([[ | |||
| [[1, 2, 3, 4, 5, 6], | |||
| [7, 8, 9, 10, 11, 12], | |||
| [13, 14, 15, 16, 17, 18], | |||
| [19, 20, 21, 22, 23, 24], | |||
| [25, 26, 27, 28, 29, 30], | |||
| [31, 32, 33, 34, 35, 36]] | |||
| ]], data_type)) | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32)) | |||
| # test case 1 | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 21.0, 21.0]], data_type)) | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, | |||
| spatial_scale, sample_num, 1) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[4.5, 6.5, 8.5], | |||
| [16.5, 18.5, 20.5], | |||
| [28.5, 30.5, 32.5]]]] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test case 1 | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[2.75, 4.5, 6.5], | |||
| [13.25, 15., 17.], | |||
| [25.25, 27., 29.]]]] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test case 2 | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], data_type)) | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, | |||
| spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[4.5, 6.5, 8.5], | |||
| [16.5, 18.5, 20.5], | |||
| [28.5, 30.5, 32.5]]]] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test case 2 | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 4, 4, 0.2, 3 | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[1.2333, 2.1000, 3.3000, 4.5000], | |||
| [6.4333, 7.3000, 8.5000, 9.7000], | |||
| [13.6333, 14.5000, 15.7000, 16.9000], | |||
| [20.8333, 21.7000, 22.9000, 24.1000]]]] | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||
| # test case 3 | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 2, 2, 1.0, -1 | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], data_type)) | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, | |||
| spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[6.295, 0.], | |||
| [0., 0.]]]] | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=2) | |||
| # test case 3 | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.3, 3 | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0], | |||
| [0, 1.0, 0.0, 19.0, 18.0]], | |||
| np.float32)) | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[3.3333, 5.5000, 7.6667], | |||
| [16.3333, 18.5000, 20.6667], | |||
| [29.3333, 31.5000, 33.6667]]], | |||
| [[[4.5000, 6.3000, 8.1000], | |||
| [14.9000, 16.7000, 18.5000], | |||
| [25.7000, 27.5000, 29.3000]]]] | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||
| # test case 4 | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 2, 2, 1.0, -1 | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32)) | |||
| roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) | |||
| output = roi_align(x, rois) | |||
| print(output) | |||
| expect = [[[[8.2222, 0.], | |||
| [0., 0.]]]] | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||
| roi_align_case(np.float32) | |||
| roi_align_case(np.float16) | |||