Browse Source

add op: ReverseSequence

tags/v0.6.0-beta
xutianchun 5 years ago
parent
commit
56913ff1cf
4 changed files with 132 additions and 1 deletions
  1. +1
    -0
      mindspore/ops/_op_impl/aicpu/__init__.py
  2. +78
    -0
      mindspore/ops/_op_impl/aicpu/reverse_sequence.py
  3. +2
    -1
      mindspore/ops/operations/__init__.py
  4. +51
    -0
      mindspore/ops/operations/array_ops.py

+ 1
- 0
mindspore/ops/_op_impl/aicpu/__init__.py View File

@@ -27,3 +27,4 @@ from .random_choice_with_mask import _random_choice_with_mask_aicpu
from .ctcloss import _ctcloss_aicpu
from .rnnt_loss import _rnnt_loss_aicpu
from .random_categorical import _random_categorical_aicpu
from .reverse_sequence import _reverse_sequence_aicpu

+ 78
- 0
mindspore/ops/_op_impl/aicpu/reverse_sequence.py View File

@@ -0,0 +1,78 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""ReverseSequence op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
reverse_sequence_op_info = AiCPURegOp("ReverseSequence") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.input(1, "seq_lengths", "required") \
.output(0, "y", "required") \
.attr("seq_dim", "int") \
.attr("batch_dim", "int") \
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, DataType.BOOL_Default) \
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.U32_Default) \
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.U64_Default) \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.F64_Default) \
.dtype_format(DataType.BOOL_NCHW, DataType.I32_NCHW, DataType.BOOL_NCHW) \
.dtype_format(DataType.I8_NCHW, DataType.I32_NCHW, DataType.I8_NCHW) \
.dtype_format(DataType.I16_NCHW, DataType.I32_NCHW, DataType.I16_NCHW) \
.dtype_format(DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW) \
.dtype_format(DataType.I64_NCHW, DataType.I32_NCHW, DataType.I64_NCHW) \
.dtype_format(DataType.U8_NCHW, DataType.I32_NCHW, DataType.U8_NCHW) \
.dtype_format(DataType.U16_NCHW, DataType.I32_NCHW, DataType.U16_NCHW) \
.dtype_format(DataType.U32_NCHW, DataType.I32_NCHW, DataType.U32_NCHW) \
.dtype_format(DataType.U64_NCHW, DataType.I32_NCHW, DataType.U64_NCHW) \
.dtype_format(DataType.F16_NCHW, DataType.I32_NCHW, DataType.F16_NCHW) \
.dtype_format(DataType.F32_NCHW, DataType.I32_NCHW, DataType.F32_NCHW) \
.dtype_format(DataType.F64_NCHW, DataType.I32_NCHW, DataType.F64_NCHW) \
.dtype_format(DataType.BOOL_Default, DataType.I64_Default, DataType.BOOL_Default) \
.dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I8_Default) \
.dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I16_Default) \
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.U8_Default) \
.dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.U16_Default) \
.dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.U32_Default) \
.dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.U64_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.F64_Default) \
.dtype_format(DataType.BOOL_NCHW, DataType.I64_NCHW, DataType.BOOL_NCHW) \
.dtype_format(DataType.I8_NCHW, DataType.I64_NCHW, DataType.I8_NCHW) \
.dtype_format(DataType.I16_NCHW, DataType.I64_NCHW, DataType.I16_NCHW) \
.dtype_format(DataType.I32_NCHW, DataType.I64_NCHW, DataType.I32_NCHW) \
.dtype_format(DataType.I64_NCHW, DataType.I64_NCHW, DataType.I64_NCHW) \
.dtype_format(DataType.U8_NCHW, DataType.I64_NCHW, DataType.U8_NCHW) \
.dtype_format(DataType.U16_NCHW, DataType.I64_NCHW, DataType.U16_NCHW) \
.dtype_format(DataType.U32_NCHW, DataType.I64_NCHW, DataType.U32_NCHW) \
.dtype_format(DataType.U64_NCHW, DataType.I64_NCHW, DataType.U64_NCHW) \
.dtype_format(DataType.F16_NCHW, DataType.I64_NCHW, DataType.F16_NCHW) \
.dtype_format(DataType.F32_NCHW, DataType.I64_NCHW, DataType.F32_NCHW) \
.dtype_format(DataType.F64_NCHW, DataType.I64_NCHW, DataType.F64_NCHW) \
.get_op_info()

@op_info_register(reverse_sequence_op_info)
def _reverse_sequence_aicpu():
"""ReverseSequence AiCPU register"""
return

+ 2
- 1
mindspore/ops/operations/__init__.py View File

@@ -30,7 +30,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
Squeeze, StridedSlice, Tile,
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin,
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace,
SpaceToBatchND, BatchToSpaceND)
SpaceToBatchND, BatchToSpaceND, ReverseSequence)
from .comm_ops import (AllGather, AllReduce, _AlltoAll, ReduceScatter, Broadcast,
_MirrorOperator, ReduceOp, _VirtualDataset,
_VirtualDiv, _GetTensorSlice,
@@ -278,6 +278,7 @@ __all__ = [
"ApplyCenteredRMSProp",
"SpaceToBatchND",
"BatchToSpaceND",
"ReverseSequence",
"SquareSumAll",
"BitwiseAnd",
"BitwiseOr",


+ 51
- 0
mindspore/ops/operations/array_ops.py View File

@@ -2720,3 +2720,54 @@ class BatchToSpaceND(PrimitiveWithInfer):
f'block_shape_prod {block_shape_prod}')
out_shape[0] = out_shape[0] // block_shape_prod
return out_shape


class ReverseSequence(PrimitiveWithInfer):
"""
Reverses variable length slices.

Note:
If the specified axis is a negative number, the index is counted
backward from the end and starts at 1.

Raises:
ValueError: If axis is not an integer or not in the valid range.
Args:
seq_dim (int): The dimension which is partially reversed. Required.
batch_dim (int): The dimension along which reversal is performed. Default: 0

Inputs:
- **x** (Tensor) - The input to reverse.
- **seq_lengths** (int) - Must be 1-D vector with types: int32, int64

Outputs:
Reversed tensor with the same shape and data type as x.

Examples:
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
>>> seq_lengths = Tensor(np.array([1, 2, 3]))
>>> reverse_sequence = P.ReverseSequence(seq_dim=1)
>>> output = reverse_sequence(x, seq_lengths)
"""

@prim_attr_register
def __init__(self, seq_dim, batch_dim=0):
"""init ReverseSequence"""
self.init_prim_io_names(inputs=['x', 'seq_lengths'], outputs=['y'])
validator.check_value_type("seq_dim", seq_dim, [int], self.name)
self.seq_dim_ = seq_dim
validator.check_value_type("batch_dim", batch_dim, [int], self.name)
self.batch_dim_ = batch_dim

def infer_shape(self, x, seq_lengths):
validator.check("seq_dim", self.seq_dim_, "x rank", len(x), Rel.LE, self.name)
validator.check("batch_dim", self.batch_dim_, "x rank", len(x), Rel.LE, self.name)
validator.check("batch_dim", self.batch_dim_, "seq_dim", self.seq_dim_, Rel.NE, self.name)
validator.check("seq_lengths rank", len(seq_lengths), "expected", 1, Rel.EQ, self.name)
validator.check("seq_lengths vector size", seq_lengths[0],
"input size along batch_dim", x[self.batch_dim_], Rel.EQ, self.name)
return x

def infer_dtype(self, x, seq_lengths):
validator.check_tensor_type_same({"seq_lengths_dtype": seq_lengths}, [mstype.int32, mstype.int64], self.name)
return x

Loading…
Cancel
Save