|
|
|
@@ -41,7 +41,7 @@ Here we used 4 datasets for training, and 1 datasets for Evaluation. |
|
|
|
- Train: 27.7MB, 410 images |
|
|
|
- Dataset3: SCUT-FORU: Flickr OCR Universal Database |
|
|
|
- Train: 388MB, 1715 images |
|
|
|
- Dataset4: CocoText v2(Subset of MSCOCO2014): |
|
|
|
- Dataset4: CocoText v2(Subset of MSCOCO2017): |
|
|
|
- Train: 13GB, 63686 images |
|
|
|
|
|
|
|
# [Features](#contents) |
|
|
|
@@ -100,9 +100,9 @@ Here we used 4 datasets for training, and 1 datasets for Evaluation. |
|
|
|
# distribute training example(8p) |
|
|
|
sh run_distribute_train_ascend.sh [IMGS_PATH] [ANNOS_PATH] [RANK_TABLE_FILE] [PRETRAINED_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
# standalone training |
|
|
|
sh run_standalone_train_ascend.sh [IMGS_PATH] [ANNOS_PATH] [PRETRAINED_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
sh run_standalone_train_ascend.sh [IMGS_PATH] [ANNOS_PATH] [PRETRAINED_PATH] [COCO_TEXT_PARSER_PATH] [DEVICE_ID] |
|
|
|
# evaluation: |
|
|
|
sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARSER_PATH] [DEVICE_ID] |
|
|
|
``` |
|
|
|
|
|
|
|
> Notes: |
|
|
|
@@ -122,7 +122,7 @@ sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARS |
|
|
|
# distribute training example(8p) |
|
|
|
sh run_distribute_train_ascend.sh [IMGS_PATH] [ANNOS_PATH] [RANK_TABLE_FILE] [PRETRAINED_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
# standalone training |
|
|
|
sh run_standalone_train_ascend.sh [IMGS_PATH] [ANNOS_PATH] [PRETRAINED_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
sh run_standalone_train_ascend.sh [IMGS_PATH] [ANNOS_PATH] [PRETRAINED_PATH] [COCO_TEXT_PARSER_PATH] [DEVICE_ID] |
|
|
|
``` |
|
|
|
|
|
|
|
### Result |
|
|
|
@@ -144,7 +144,7 @@ You can start training using python or shell scripts. The usage of shell scripts |
|
|
|
- Ascend: |
|
|
|
|
|
|
|
```bash |
|
|
|
sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARSER_PATH] [DEVICE_ID] |
|
|
|
``` |
|
|
|
|
|
|
|
### Launch |
|
|
|
@@ -153,7 +153,7 @@ You can start training using python or shell scripts. The usage of shell scripts |
|
|
|
# eval example |
|
|
|
shell: |
|
|
|
Ascend: |
|
|
|
sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARSER_PATH] |
|
|
|
sh run_eval_ascend.sh [IMGS_PATH] [ANNOS_PATH] [CHECKPOINT_PATH] [COCO_TEXT_PARSER_PATH] [DEVICE_ID] |
|
|
|
``` |
|
|
|
|
|
|
|
> checkpoint can be produced in training process. |
|
|
|
@@ -186,7 +186,6 @@ class 1 precision is 88.01%, recall is 82.77% |
|
|
|
| Optimizer | Momentum | |
|
|
|
| Loss Function | SoftmaxCrossEntropyWithLogits for classification, SmoothL2Loss for bbox regression| |
|
|
|
| Loss | ~0.008 | |
|
|
|
| Accuracy (8p) | precision=0.8854, recall=0.8024 | |
|
|
|
| Total time (8p) | 4h | |
|
|
|
| Scripts | [deeptext script](https://gitee.com/mindspore/mindspore/tree/r1.1/mindspore/official/cv/deeptext) | |
|
|
|
|
|
|
|
@@ -200,7 +199,7 @@ class 1 precision is 88.01%, recall is 82.77% |
|
|
|
| MindSpore Version | 1.1.0 | |
|
|
|
| Dataset | 229 images | |
|
|
|
| Batch_size | 2 | |
|
|
|
| Accuracy | precision=0.8854, recall=0.8024 | |
|
|
|
| Accuracy | precision=0.8801, recall=0.8277 | |
|
|
|
| Total time | 1 min | |
|
|
|
| Model for inference | 3492M (.ckpt file) | |
|
|
|
|
|
|
|
@@ -208,11 +207,11 @@ class 1 precision is 88.01%, recall is 82.77% |
|
|
|
|
|
|
|
| **Ascend** | train performance | |
|
|
|
| :--------: | :---------------: | |
|
|
|
| 1p | 42 img/s | |
|
|
|
| 1p | 14 img/s | |
|
|
|
|
|
|
|
| **Ascend** | train performance | |
|
|
|
| :--------: | :---------------: | |
|
|
|
| 8p | 330 img/s | |
|
|
|
| 8p | 50 img/s | |
|
|
|
|
|
|
|
# [Description of Random Situation](#contents) |
|
|
|
|
|
|
|
|