Merge pull request !3836 from zhanyuan/mastertags/v0.7.0-beta
| @@ -17,6 +17,7 @@ | |||
| #include "src/runtime/kernel/arm/int8/fullconnection_int8.h" | |||
| #include "src/runtime/kernel/arm/opclib/int8/matmul.h" | |||
| #include "src/runtime/kernel/arm/opclib/common_func.h" | |||
| #include "src/runtime/runtime_api.h" | |||
| #include "include/errorcode.h" | |||
| using mindspore::lite::RET_MEMORY_FAILED; | |||
| @@ -25,22 +26,42 @@ using mindspore::lite::RET_OK; | |||
| namespace mindspore::kernel { | |||
| int FullconnectionInt8CPUKernel::Init() { | |||
| fc_param_->row_ = (inputs_[0]->shape())[0]; | |||
| fc_param_->col_ = (inputs_[1]->shape())[1]; | |||
| fc_param_->deep_ = (inputs_[1]->shape())[0]; | |||
| fc_param_->col_ = (inputs_[1]->shape())[0]; | |||
| fc_param_->deep_ = (inputs_[1]->shape())[1]; | |||
| fc_param_->row_8_ = UP_ROUND(fc_param_->row_, 8); | |||
| fc_param_->col_8_ = UP_ROUND(fc_param_->col_, 8); | |||
| thread_count_ = MSMIN(thread_count_, UP_DIV(fc_param_->col_8_, 8)); | |||
| thread_stride_ = UP_DIV(UP_DIV(fc_param_->col_8_, 8), thread_count_); | |||
| a_c8_ptr_ = | |||
| reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(fc_param_->row_8_ * fc_param_->deep_ * sizeof(int8_t))); | |||
| if (!a_c8_ptr_) { | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| memset(a_c8_ptr_, 0, fc_param_->row_8_ * fc_param_->deep_ * sizeof(int8_t)); | |||
| b_r8_ptr_ = | |||
| reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(fc_param_->col_8_ * fc_param_->deep_ * sizeof(int8_t))); | |||
| if (!b_r8_ptr_) { | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| memset(b_r8_ptr_, 0, fc_param_->col_8_ * fc_param_->deep_ * sizeof(int8_t)); | |||
| auto weight_data = reinterpret_cast<int8_t *>(inputs_[1]->Data()); | |||
| RowMajor2Col8MajorInt8(weight_data, b_r8_ptr_, fc_param_->col_, fc_param_->deep_); | |||
| c_r8x8_ptr_ = reinterpret_cast<int *>(ctx_->allocator->Malloc(fc_param_->row_8_ * fc_param_->col_8_ * sizeof(int))); | |||
| if (!c_r8x8_ptr_) { | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| memset(c_r8x8_ptr_, 0, fc_param_->row_8_ * fc_param_->col_8_ * sizeof(int)); | |||
| if (!a_c8_ptr_ || !b_r8_ptr_ || !c_r8x8_ptr_) { | |||
| auto bias_len = fc_param_->col_8_ * sizeof(int); | |||
| bias_ptr_ = reinterpret_cast<int *>(ctx_->allocator->Malloc(bias_len)); | |||
| if (!bias_ptr_) { | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| memset(bias_ptr_, 0, bias_len); | |||
| if (inputs_.size() == 3) { | |||
| memcpy(bias_ptr_, inputs_[2]->Data(), bias_len); | |||
| } | |||
| auto input_tensor = inputs_[0]; | |||
| auto params = input_tensor->GetQuantParams(); | |||
| @@ -59,7 +80,8 @@ int FullconnectionInt8CPUKernel::Init() { | |||
| quant_params_.output.scale_ = params.front().scale; | |||
| double real_multiplier = quant_params_.input.scale_ * quant_params_.weight.scale_ / quant_params_.output.scale_; | |||
| QuantizeMultiplier(real_multiplier, &quant_params_.quant_multiplier, &quant_params_.output_shift); | |||
| QuantizeRoundParameter(real_multiplier, &quant_params_.quant_multiplier, &quant_params_.left_shift, | |||
| &quant_params_.right_shift); | |||
| CalculateActivationRangeQuantized(fc_param_->maxf_, fc_param_->minf_, quant_params_.output.scale_, | |||
| quant_params_.output.zp_, &quant_params_.out_act_max, &quant_params_.out_act_min); | |||
| @@ -68,22 +90,37 @@ int FullconnectionInt8CPUKernel::Init() { | |||
| int FullconnectionInt8CPUKernel::ReSize() { return RET_OK; } | |||
| int FullconnectionInt8CPUKernel::Run() { | |||
| auto a_ptr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data()); | |||
| auto b_ptr = reinterpret_cast<int8_t *>(inputs_.at(1)->Data()); | |||
| auto bias_ptr = reinterpret_cast<int *>(inputs_.at(2)->Data()); | |||
| auto output_ptr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data()); | |||
| int FullconnectionInt8CPUKernel::RunImpl(int task_id) { | |||
| int cur_oc = MSMIN(thread_stride_, UP_DIV(fc_param_->col_8_, 8) - task_id * thread_stride_); | |||
| if (cur_oc <= 0) { | |||
| return RET_OK; | |||
| } | |||
| auto &p = quant_params_; | |||
| auto cur_b = b_r8_ptr_ + task_id * thread_stride_ * C8NUM * fc_param_->deep_; | |||
| auto cur_c = c_r8x8_ptr_ + task_id * thread_stride_ * C8NUM * fc_param_->row_8_; | |||
| MatMulInt8(a_c8_ptr_, cur_b, cur_c, fc_param_->row_8_, cur_oc * 8, fc_param_->deep_, p.input.zp_, p.weight.zp_); | |||
| return RET_OK; | |||
| } | |||
| // rows*depth -> rows*depth, col_8 major | |||
| RowMajor2Col8MajorInt8(a_ptr, a_c8_ptr_, fc_param_->row_, fc_param_->deep_); | |||
| // cols*depth -> cols*depth, col_8 major == depth*cols, row_8 major | |||
| RowMajor2Col8MajorInt8(b_ptr, b_r8_ptr_, fc_param_->col_, fc_param_->deep_); | |||
| MatMulInt8(a_c8_ptr_, b_r8_ptr_, c_r8x8_ptr_, fc_param_->row_8_, fc_param_->col_8_, fc_param_->deep_, p.input.zp_, | |||
| p.weight.zp_); | |||
| PostFuncInt8(c_r8x8_ptr_, bias_ptr, output_ptr, fc_param_->col_, fc_param_->row_, fc_param_->col_8_, | |||
| fc_param_->row_8_, p.quant_multiplier, p.output_shift, p.output.zp_, p.out_act_min, p.out_act_max); | |||
| int FcInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) { | |||
| auto fc = reinterpret_cast<FullconnectionInt8CPUKernel *>(cdata); | |||
| auto ret = fc->RunImpl(task_id); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "FcInt8Run error task_id[" << task_id << "] error_code[" << ret << "]"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int FullconnectionInt8CPUKernel::Run() { | |||
| auto a_ptr = reinterpret_cast<int8_t *>(inputs_[0]->Data()); | |||
| auto output_ptr = reinterpret_cast<int8_t *>(outputs_[0]->Data()); | |||
| auto &p = quant_params_; | |||
| RowMajor2Col8MajorInt8(a_ptr, a_c8_ptr_, fc_param_->row_, fc_param_->deep_); | |||
| LiteBackendParallelLaunch(FcInt8Run, this, thread_count_); | |||
| PostFuncInt8(c_r8x8_ptr_, bias_ptr_, output_ptr, fc_param_->col_, fc_param_->row_, fc_param_->row_8_, | |||
| p.quant_multiplier, p.left_shift, p.right_shift, p.output.zp_, p.out_act_min, p.out_act_max); | |||
| return RET_OK; | |||
| } | |||
| } // namespace mindspore::kernel | |||
| @@ -31,20 +31,22 @@ class FullconnectionInt8CPUKernel : public FullconnectionBaseCPUKernel { | |||
| const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx) | |||
| : FullconnectionBaseCPUKernel(parameter, inputs, outputs, ctx) {} | |||
| ~FullconnectionInt8CPUKernel() override { | |||
| free(a_c8_ptr_); | |||
| free(b_r8_ptr_); | |||
| free(c_r8x8_ptr_); | |||
| ctx_->allocator->Free(a_c8_ptr_); | |||
| ctx_->allocator->Free(b_r8_ptr_); | |||
| ctx_->allocator->Free(c_r8x8_ptr_); | |||
| } | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| int RunImpl(int task_id); | |||
| private: | |||
| FcQuantArg quant_params_; | |||
| int8_t *a_c8_ptr_; | |||
| int8_t *b_r8_ptr_; | |||
| int *c_r8x8_ptr_; | |||
| int *bias_ptr_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -17,17 +17,17 @@ | |||
| // \-----------------------------------------/ | |||
| // LM 8x1 block | |||
| // /---------------------\ /-----------------------------------------\ | |||
| // | v0.s[0] | |v16.s[0] ... v30.s[0]| | |||
| // | v0.s[0] | |v16.s[0]...v16.s[3] v17.s[0]...v17.s[3]| | |||
| // | ... | | ... ... | | |||
| // | v0.s[3] | |v16.s[3] ... v30.s[3]| | |||
| // | v1.s[0] | |v17.s[0] ... v31.s[0]| | |||
| // | v0.s[3] | |v22.s[0]...v22.s[3] v23.s[0]...v23.s[3]| | |||
| // | v1.s[0] | |v24.s[0]...v24.s[3] v25.s[0]...v25.s[3]| | |||
| // | ... | | ... ... | | |||
| // | v1.s[3] | |v17.s[3] ... v31.s[3]| | |||
| // | v1.s[3] | |v30.s[0]...v30.s[3] v31.s[0]...v31.s[3]| | |||
| // \---------------------/ \-----------------------------------------/ | |||
| // accumulators 8x8 block | |||
| // | |||
| /////////////////////////////////////////////////////////////////////////////// | |||
| //OptLoopMul4 RHS 1x8 block | |||
| //OptLoopMul4 RM 1x8 block | |||
| // /--------------------------------------------\ | |||
| // |v8.s[0] ... v8.s[3] v9.s[0] ... v9.s[3] | | |||
| // |v10.s[0] ... v10.s[3] v11.s[0] ... v11.s[3]| | |||
| @@ -36,12 +36,12 @@ | |||
| // \--------------------------------------------/ | |||
| // LM 8x4 block | |||
| // /---------------------------------\ /--------------------------------------------\ | |||
| // | v0.s[0] v2.s[0] v4.s[0] v6.s[0] | |v16.s[0] ... v30.s[0]| | |||
| // | v0.s[0] v2.s[0] v4.s[0] v6.s[0] | |v16.s[0]...v16.s[3] v17.s[0]...v17.s[3] | | |||
| // | ... ... ... ... | | ... ... | | |||
| // | v0.s[3] v2.s[3] v4.s[3] v6.s[3] | |v16.s[3] ... v30.s[3]| | |||
| // | v1.s[0] v3.s[0] v5.s[0] v7.s[0] | |v17.s[0] ... v31.s[0]| | |||
| // | v0.s[3] v2.s[3] v4.s[3] v6.s[3] | |v22.s[0]...v22.s[3] v23.s[0]...v23.s[3] | | |||
| // | v1.s[0] v3.s[0] v5.s[0] v7.s[0] | |v24.s[0]...v24.s[3] v25.s[0]...v25.s[3] | | |||
| // | ... ... ... ... | | ... ... | | |||
| // | v1.s[3] v3.s[3] v5.s[3] v7.s[3] | |v17.s[3] ... v31.s[3]| | |||
| // | v1.s[3] v3.s[3] v5.s[3] v7.s[3] | |v30.s[0]...v30.s[3] v31.s[0]...v31.s[3] | | |||
| // \---------------------------------/ \--------------------------------------------/ | |||
| // accumulators 8x8 block | |||
| ///////////////////////////////////////////////////////////////////////////////// | |||
| @@ -64,25 +64,22 @@ MatMulFloatNeon64: | |||
| mov w7, v0.s[0] | |||
| mov w8, v1.s[0] | |||
| mov w9, 0 // row counter | |||
| mov w10, 0 // col counter | |||
| mov w18, #32 | |||
| mul w15, w4, w18 // the stride of a or b | |||
| mul w16, w6, w18 // the stride of c | |||
| mov w9, 0 // rm col offset | |||
| mov w10, 0 // lm row offset | |||
| mov w18, #32 // sizeof(float)*8 | |||
| mul w15, w4, w18 // the stride of lm/rm: sizeof(float)*8*depth | |||
| L1: | |||
| cmp w9, w5 | |||
| cmp w9, w6 | |||
| beq End1 | |||
| mov w10, 0 // reset col counter | |||
| mov x12, x1 // reload b ptr | |||
| mov x17, x2 // reload current c ptr | |||
| mov w10, 0 // reset lm row offset | |||
| mov x12, x0 // reload lm ptr | |||
| mov x14, x3 // reload bias ptr | |||
| L2: | |||
| cmp w10, w6 | |||
| beq End2 | |||
| mov x11, x0 // reload a ptr | |||
| mov w13, w4 // reload depth | |||
| dup v16.4s, wzr | |||
| dup v17.4s, wzr | |||
| @@ -105,142 +102,127 @@ OptLoopMul4: | |||
| cmp w13, #4 | |||
| blt CommLoopMul | |||
| ld1 {v0.4s}, [x11], #16 | |||
| ld1 {v8.4s}, [x12], #16 | |||
| fmla v16.4s, v0.4s, v8.s[0] | |||
| fmla v18.4s, v0.4s, v8.s[1] | |||
| ld1 {v1.4s}, [x11], #16 | |||
| fmla v20.4s, v0.4s, v8.s[2] | |||
| fmla v22.4s, v0.4s, v8.s[3] | |||
| ld1 {v9.4s}, [x12], #16 | |||
| fmla v25.4s, v1.4s, v9.s[0] | |||
| fmla v27.4s, v1.4s, v9.s[1] | |||
| fmla v29.4s, v1.4s, v9.s[2] | |||
| fmla v31.4s, v1.4s, v9.s[3] | |||
| ld1 {v2.4s}, [x11], #16 | |||
| ld1 {v3.4s}, [x11], #16 | |||
| fmla v24.4s, v0.4s, v9.s[0] | |||
| fmla v26.4s, v0.4s, v9.s[1] | |||
| fmla v28.4s, v0.4s, v9.s[2] | |||
| fmla v30.4s, v0.4s, v9.s[3] | |||
| fmla v17.4s, v1.4s, v8.s[0] | |||
| fmla v19.4s, v1.4s, v8.s[1] | |||
| fmla v21.4s, v1.4s, v8.s[2] | |||
| fmla v23.4s, v1.4s, v8.s[3] | |||
| ld1 {v10.4s}, [x12], #16 | |||
| ld1 {v11.4s}, [x12], #16 | |||
| fmla v16.4s, v2.4s, v10.s[0] | |||
| fmla v18.4s, v2.4s, v10.s[1] | |||
| fmla v20.4s, v2.4s, v10.s[2] | |||
| fmla v22.4s, v2.4s, v10.s[3] | |||
| fmla v25.4s, v3.4s, v11.s[0] | |||
| fmla v27.4s, v3.4s, v11.s[1] | |||
| fmla v29.4s, v3.4s, v11.s[2] | |||
| fmla v31.4s, v3.4s, v11.s[3] | |||
| ld1 {v4.4s}, [x11], #16 | |||
| ld1 {v5.4s}, [x11], #16 | |||
| fmla v24.4s, v2.4s, v11.s[0] | |||
| fmla v26.4s, v2.4s, v11.s[1] | |||
| fmla v28.4s, v2.4s, v11.s[2] | |||
| fmla v30.4s, v2.4s, v11.s[3] | |||
| fmla v17.4s, v3.4s, v10.s[0] | |||
| fmla v19.4s, v3.4s, v10.s[1] | |||
| fmla v21.4s, v3.4s, v10.s[2] | |||
| fmla v23.4s, v3.4s, v10.s[3] | |||
| ld1 {v12.4s}, [x12], #16 | |||
| ld1 {v13.4s}, [x12], #16 | |||
| fmla v16.4s, v4.4s, v12.s[0] | |||
| fmla v18.4s, v4.4s, v12.s[1] | |||
| fmla v20.4s, v4.4s, v12.s[2] | |||
| fmla v22.4s, v4.4s, v12.s[3] | |||
| fmla v25.4s, v5.4s, v13.s[0] | |||
| fmla v27.4s, v5.4s, v13.s[1] | |||
| fmla v29.4s, v5.4s, v13.s[2] | |||
| fmla v31.4s, v5.4s, v13.s[3] | |||
| ld1 {v6.4s}, [x11], #16 | |||
| ld1 {v7.4s}, [x11], #16 | |||
| fmla v24.4s, v4.4s, v13.s[0] | |||
| fmla v26.4s, v4.4s, v13.s[1] | |||
| fmla v28.4s, v4.4s, v13.s[2] | |||
| fmla v30.4s, v4.4s, v13.s[3] | |||
| fmla v17.4s, v5.4s, v12.s[0] | |||
| fmla v19.4s, v5.4s, v12.s[1] | |||
| fmla v21.4s, v5.4s, v12.s[2] | |||
| fmla v23.4s, v5.4s, v12.s[3] | |||
| ld1 {v14.4s}, [x12], #16 | |||
| ld1 {v15.4s}, [x12], #16 | |||
| fmla v16.4s, v6.4s, v14.s[0] | |||
| fmla v18.4s, v6.4s, v14.s[1] | |||
| fmla v20.4s, v6.4s, v14.s[2] | |||
| fmla v22.4s, v6.4s, v14.s[3] | |||
| fmla v25.4s, v7.4s, v15.s[0] | |||
| fmla v27.4s, v7.4s, v15.s[1] | |||
| fmla v29.4s, v7.4s, v15.s[2] | |||
| fmla v31.4s, v7.4s, v15.s[3] | |||
| fmla v24.4s, v6.4s, v15.s[0] | |||
| fmla v26.4s, v6.4s, v15.s[1] | |||
| fmla v28.4s, v6.4s, v15.s[2] | |||
| fmla v30.4s, v6.4s, v15.s[3] | |||
| fmla v17.4s, v7.4s, v14.s[0] | |||
| fmla v19.4s, v7.4s, v14.s[1] | |||
| fmla v21.4s, v7.4s, v14.s[2] | |||
| fmla v23.4s, v7.4s, v14.s[3] | |||
| ld1 {v0.4s, v1.4s}, [x12], #32 | |||
| ld1 {v8.4s, v9.4s}, [x1], #32 | |||
| fmla v16.4s, v8.4s, v0.s[0] | |||
| fmla v17.4s, v9.4s, v0.s[0] | |||
| fmla v18.4s, v8.4s, v0.s[1] | |||
| fmla v19.4s, v9.4s, v0.s[1] | |||
| fmla v20.4s, v8.4s, v0.s[2] | |||
| fmla v21.4s, v9.4s, v0.s[2] | |||
| fmla v22.4s, v8.4s, v0.s[3] | |||
| fmla v23.4s, v9.4s, v0.s[3] | |||
| ld1 {v10.4s, v11.4s}, [x1], #32 | |||
| fmla v24.4s, v8.4s, v1.s[0] | |||
| fmla v25.4s, v9.4s, v1.s[0] | |||
| fmla v26.4s, v8.4s, v1.s[1] | |||
| fmla v27.4s, v9.4s, v1.s[1] | |||
| ld1 {v2.4s, v3.4s}, [x12], #32 | |||
| fmla v28.4s, v8.4s, v1.s[2] | |||
| fmla v29.4s, v9.4s, v1.s[2] | |||
| fmla v30.4s, v8.4s, v1.s[3] | |||
| fmla v31.4s, v9.4s, v1.s[3] | |||
| fmla v16.4s, v10.4s, v2.s[0] | |||
| fmla v17.4s, v11.4s, v2.s[0] | |||
| fmla v18.4s, v10.4s, v2.s[1] | |||
| fmla v19.4s, v11.4s, v2.s[1] | |||
| fmla v20.4s, v10.4s, v2.s[2] | |||
| fmla v21.4s, v11.4s, v2.s[2] | |||
| fmla v22.4s, v10.4s, v2.s[3] | |||
| fmla v23.4s, v11.4s, v2.s[3] | |||
| ld1 {v12.4s, v13.4s}, [x1], #32 | |||
| fmla v24.4s, v10.4s, v3.s[0] | |||
| fmla v25.4s, v11.4s, v3.s[0] | |||
| fmla v26.4s, v10.4s, v3.s[1] | |||
| fmla v27.4s, v11.4s, v3.s[1] | |||
| ld1 {v4.4s, v5.4s}, [x12], #32 | |||
| fmla v28.4s, v10.4s, v3.s[2] | |||
| fmla v29.4s, v11.4s, v3.s[2] | |||
| fmla v30.4s, v10.4s, v3.s[3] | |||
| fmla v31.4s, v11.4s, v3.s[3] | |||
| fmla v16.4s, v12.4s, v4.s[0] | |||
| fmla v17.4s, v13.4s, v4.s[0] | |||
| fmla v18.4s, v12.4s, v4.s[1] | |||
| fmla v19.4s, v13.4s, v4.s[1] | |||
| fmla v20.4s, v12.4s, v4.s[2] | |||
| fmla v21.4s, v13.4s, v4.s[2] | |||
| fmla v22.4s, v12.4s, v4.s[3] | |||
| fmla v23.4s, v13.4s, v4.s[3] | |||
| ld1 {v6.4s,v7.4s}, [x12], #32 | |||
| fmla v24.4s, v12.4s, v5.s[0] | |||
| fmla v25.4s, v13.4s, v5.s[0] | |||
| fmla v26.4s, v12.4s, v5.s[1] | |||
| fmla v27.4s, v13.4s, v5.s[1] | |||
| ld1 {v14.4s, v15.4s}, [x1], #32 | |||
| fmla v28.4s, v12.4s, v5.s[2] | |||
| fmla v29.4s, v13.4s, v5.s[2] | |||
| fmla v30.4s, v12.4s, v5.s[3] | |||
| fmla v31.4s, v13.4s, v5.s[3] | |||
| fmla v16.4s, v14.4s, v6.s[0] | |||
| fmla v17.4s, v15.4s, v6.s[0] | |||
| fmla v18.4s, v14.4s, v6.s[1] | |||
| fmla v19.4s, v15.4s, v6.s[1] | |||
| fmla v20.4s, v14.4s, v6.s[2] | |||
| fmla v21.4s, v15.4s, v6.s[2] | |||
| fmla v22.4s, v14.4s, v6.s[3] | |||
| fmla v23.4s, v15.4s, v6.s[3] | |||
| fmla v24.4s, v14.4s, v7.s[0] | |||
| fmla v25.4s, v15.4s, v7.s[0] | |||
| fmla v26.4s, v14.4s, v7.s[1] | |||
| fmla v27.4s, v15.4s, v7.s[1] | |||
| fmla v28.4s, v14.4s, v7.s[2] | |||
| fmla v29.4s, v15.4s, v7.s[2] | |||
| fmla v30.4s, v14.4s, v7.s[3] | |||
| fmla v31.4s, v15.4s, v7.s[3] | |||
| subs w13, w13, #4 | |||
| b OptLoopMul4 | |||
| CommLoopMul: | |||
| cmp w13, #1 | |||
| blt Bias | |||
| ld1 {v0.4s}, [x11], #16 | |||
| ld1 {v2.4s}, [x12], #16 | |||
| fmla v16.4s, v0.4s, v2.s[0] | |||
| fmla v18.4s, v0.4s, v2.s[1] | |||
| ld1 {v1.4s}, [x11], #16 | |||
| fmla v20.4s, v0.4s, v2.s[2] | |||
| fmla v22.4s, v0.4s, v2.s[3] | |||
| ld1 {v3.4s}, [x12], #16 | |||
| fmla v25.4s, v1.4s, v3.s[0] | |||
| fmla v27.4s, v1.4s, v3.s[1] | |||
| fmla v29.4s, v1.4s, v3.s[2] | |||
| fmla v31.4s, v1.4s, v3.s[3] | |||
| fmla v24.4s, v0.4s, v3.s[0] | |||
| fmla v26.4s, v0.4s, v3.s[1] | |||
| fmla v28.4s, v0.4s, v3.s[2] | |||
| fmla v30.4s, v0.4s, v3.s[3] | |||
| fmla v17.4s, v1.4s, v2.s[0] | |||
| fmla v19.4s, v1.4s, v2.s[1] | |||
| fmla v21.4s, v1.4s, v2.s[2] | |||
| fmla v23.4s, v1.4s, v2.s[3] | |||
| ld1 {v0.4s, v1.4s}, [x12], #32 | |||
| ld1 {v2.4s, v3.4s}, [x1], #32 | |||
| fmla v16.4s, v2.4s, v0.s[0] | |||
| fmla v17.4s, v3.4s, v0.s[0] | |||
| fmla v18.4s, v2.4s, v0.s[1] | |||
| fmla v19.4s, v3.4s, v0.s[1] | |||
| fmla v20.4s, v2.4s, v0.s[2] | |||
| fmla v21.4s, v3.4s, v0.s[2] | |||
| fmla v22.4s, v2.4s, v0.s[3] | |||
| fmla v23.4s, v3.4s, v0.s[3] | |||
| fmla v24.4s, v2.4s, v1.s[0] | |||
| fmla v25.4s, v3.4s, v1.s[0] | |||
| fmla v26.4s, v2.4s, v1.s[1] | |||
| fmla v27.4s, v3.4s, v1.s[1] | |||
| fmla v28.4s, v2.4s, v1.s[2] | |||
| fmla v29.4s, v3.4s, v1.s[2] | |||
| fmla v30.4s, v2.4s, v1.s[3] | |||
| fmla v31.4s, v3.4s, v1.s[3] | |||
| subs w13, w13, #1 | |||
| b CommLoopMul | |||
| Bias: | |||
| cmp x3, #0 | |||
| beq Relu | |||
| ld1 {v0.4s}, [x14], #16 | |||
| ld1 {v1.4s}, [x14], #16 | |||
| dup v2.4s, v0.s[0] | |||
| fadd v16.4s, v16.4s, v2.4s | |||
| fadd v17.4s, v17.4s, v2.4s | |||
| dup v3.4s, v0.s[1] | |||
| fadd v18.4s, v18.4s, v3.4s | |||
| fadd v19.4s, v19.4s, v3.4s | |||
| dup v4.4s, v0.s[2] | |||
| fadd v20.4s, v20.4s, v4.4s | |||
| fadd v21.4s, v21.4s, v4.4s | |||
| dup v5.4s, v0.s[3] | |||
| fadd v22.4s, v22.4s, v5.4s | |||
| fadd v23.4s, v23.4s, v5.4s | |||
| dup v2.4s, v1.s[0] | |||
| fadd v24.4s, v24.4s, v2.4s | |||
| fadd v25.4s, v25.4s, v2.4s | |||
| dup v3.4s, v1.s[1] | |||
| fadd v26.4s, v26.4s, v3.4s | |||
| fadd v27.4s, v27.4s, v3.4s | |||
| dup v4.4s, v1.s[2] | |||
| fadd v28.4s, v28.4s, v4.4s | |||
| fadd v29.4s, v29.4s, v4.4s | |||
| dup v5.4s, v1.s[3] | |||
| fadd v30.4s, v30.4s, v5.4s | |||
| fadd v31.4s, v31.4s, v5.4s | |||
| fadd v16.4s, v16.4s, v0.4s | |||
| fadd v17.4s, v17.4s, v1.4s | |||
| fadd v18.4s, v18.4s, v0.4s | |||
| fadd v19.4s, v19.4s, v1.4s | |||
| fadd v20.4s, v20.4s, v0.4s | |||
| fadd v21.4s, v21.4s, v1.4s | |||
| fadd v22.4s, v22.4s, v0.4s | |||
| fadd v23.4s, v23.4s, v1.4s | |||
| fadd v24.4s, v24.4s, v0.4s | |||
| fadd v25.4s, v25.4s, v1.4s | |||
| fadd v26.4s, v26.4s, v0.4s | |||
| fadd v27.4s, v27.4s, v1.4s | |||
| fadd v28.4s, v28.4s, v0.4s | |||
| fadd v29.4s, v29.4s, v1.4s | |||
| fadd v30.4s, v30.4s, v0.4s | |||
| fadd v31.4s, v31.4s, v1.4s | |||
| Relu: | |||
| dup v15.4s, w7 | |||
| @@ -281,30 +263,28 @@ Relu: | |||
| fmin v31.4s, v31.4s, v15.4s | |||
| TransToOut: | |||
| st1 {v16.4s}, [x17], #16 | |||
| st1 {v17.4s}, [x17], #16 | |||
| st1 {v18.4s}, [x17], #16 | |||
| st1 {v19.4s}, [x17], #16 | |||
| st1 {v20.4s}, [x17], #16 | |||
| st1 {v21.4s}, [x17], #16 | |||
| st1 {v22.4s}, [x17], #16 | |||
| st1 {v23.4s}, [x17], #16 | |||
| st1 {v24.4s}, [x17], #16 | |||
| st1 {v25.4s}, [x17], #16 | |||
| st1 {v26.4s}, [x17], #16 | |||
| st1 {v27.4s}, [x17], #16 | |||
| st1 {v28.4s}, [x17], #16 | |||
| st1 {v29.4s}, [x17], #16 | |||
| st1 {v30.4s}, [x17], #16 | |||
| st1 {v31.4s}, [x17], #16 | |||
| st1 {v16.4s}, [x2], #16 | |||
| st1 {v17.4s}, [x2], #16 | |||
| st1 {v18.4s}, [x2], #16 | |||
| st1 {v19.4s}, [x2], #16 | |||
| st1 {v20.4s}, [x2], #16 | |||
| st1 {v21.4s}, [x2], #16 | |||
| st1 {v22.4s}, [x2], #16 | |||
| st1 {v23.4s}, [x2], #16 | |||
| st1 {v24.4s}, [x2], #16 | |||
| st1 {v25.4s}, [x2], #16 | |||
| st1 {v26.4s}, [x2], #16 | |||
| st1 {v27.4s}, [x2], #16 | |||
| st1 {v28.4s}, [x2], #16 | |||
| st1 {v29.4s}, [x2], #16 | |||
| st1 {v30.4s}, [x2], #16 | |||
| st1 {v31.4s}, [x2], #16 | |||
| add w10, w10, #8 // col+=8 | |||
| add w10, w10, #8 // lhs row offset + 8 | |||
| b L2 | |||
| End2: | |||
| add x0, x0, x15 // stride a ptr | |||
| add x2, x2, x16 // stride c ptr | |||
| add w9, w9, #8 // row+=8 | |||
| add w9, w9, #8 // rhs col offset + 8 | |||
| b L1 | |||
| End1: | |||
| @@ -74,5 +74,9 @@ void MatMul8x8(const float *a, const float *b, float *c, const float *bias, floa | |||
| void MatMul(const float *a, const float *b, float *c, const float *bias, float maxf, float minf, int deep, int row_8_, | |||
| int col_8_) { | |||
| #ifdef __aarch64__ | |||
| MatMulFloatNeon64(a, b, c, bias, maxf, minf, deep, row_8_, col_8_); | |||
| #else | |||
| MatMul8x8(a, b, c, bias, maxf, minf, deep, row_8_, col_8_); | |||
| #endif | |||
| } | |||
| @@ -21,19 +21,22 @@ | |||
| #include "src/runtime/kernel/arm/opclib/op_base.h" | |||
| #include "src/runtime/kernel/arm/opclib/matmul.h" | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void MatMul(const float *a, const float *b, float *c, const float *bias, float maxf, float minf, int depth, int row, | |||
| int col); | |||
| void RowMajor2Row8Major(float *src_ptr, float *dst_ptr, int row, int col); | |||
| void RowMajor2Col8Major(float *src_ptr, float *dst_ptr, int row, int col); | |||
| void Row8x8Major2RowMajor(float *src_ptr, float *dst_ptr, int row, int col); | |||
| void MatMul8x8(const float *a, const float *b, float *c, const float *bias, float maxf, float minf, int deep, | |||
| int row_8_, int col_8_); | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| #ifdef __aarch64__ | |||
| void MatMulFloatNeon64(const float *a, const float *b, float *c, const float *bias, float maxf, float minf, int depth, | |||
| int row, int col); | |||
| #endif | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_FP32_MATMUL_H_ | |||
| @@ -48,54 +48,3 @@ void MatMulInt8(const int8_t *a, const int8_t *b, int32_t *c, const int row8, co | |||
| } | |||
| return; | |||
| } | |||
| // todo: need to delete, replace by above functions. z00445833 | |||
| void GemmRowCol8x8Major2RowMajorInt8(int8_t *src_ptr, int8_t *dst_ptr, int row, int col) { | |||
| int col8 = UP_ROUND(col, 8); | |||
| for (int r = 0; r < row; r++) { | |||
| int rd8 = r / 8; | |||
| int rm8 = r % 8; | |||
| for (int c = 0; c < col; c++) { | |||
| dst_ptr[r * col + c] = src_ptr[rd8 * col8 * 8 + c * 8 + rm8]; | |||
| } | |||
| } | |||
| } | |||
| void Gemm8x8Int8(const int8_t *lhs_data, const int8_t *rhs_data, const int8_t *bias_data, int8_t *output_data, | |||
| int depth, FcQuantArg *params) { | |||
| int lhs_offset = params->input.zp_; | |||
| int rhs_offset = params->weight.zp_; | |||
| int output_offset = params->output.zp_; | |||
| int output_multiplier = params->quant_multiplier; | |||
| int output_shift = params->output_shift; | |||
| for (int row = 0; row < 8; ++row) { | |||
| for (int col = 0; col < 8; ++col) { | |||
| int c_index = col * 8 + row; | |||
| int acc = 0; | |||
| for (int d = 0; d < depth; ++d) { | |||
| int a_index = d * 8 + row; | |||
| int b_index = d * 8 + col; | |||
| acc += (lhs_data[a_index] - lhs_offset) * (rhs_data[b_index] - rhs_offset); | |||
| } | |||
| acc += bias_data[col]; | |||
| acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift, output_shift) + output_offset; | |||
| acc = MSMAX(CHAR_MIN, MSMIN(CHAR_MAX, acc)); | |||
| output_data[c_index] = (int8_t)acc; | |||
| } | |||
| } | |||
| } | |||
| void GemmInt8(const int8_t *input_data, const int8_t *weights_data, const int8_t *bias_data, int8_t *output_data, | |||
| int row_8, int col_8, int depth, FcQuantArg *params) { | |||
| for (int r = 0; r < row_8; r += 8) { | |||
| int8_t *output = output_data + r * col_8; | |||
| const int8_t *input = input_data + r * depth; | |||
| for (int c = 0; c < col_8; c += 8) { | |||
| const int8_t *bias = bias_data + c; | |||
| const int8_t *weights = weights_data + c * depth; | |||
| int8_t *dst = output + c * 8; | |||
| Gemm8x8Int8(input, weights, bias, dst, depth, params); | |||
| } | |||
| } | |||
| } | |||
| @@ -20,23 +20,9 @@ | |||
| #include "src/runtime/kernel/arm/opclib/op_base.h" | |||
| #include "src/runtime/kernel/arm/opclib/matmul.h" | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void MatMulInt8(const int8_t *a, const int8_t *b, int32_t *c, const int row8, const int col8, const int deep, | |||
| const int32_t a_zp, const int32_t b_zp); | |||
| void RowMajor2Col8MajorInt8(int8_t *src_ptr, int8_t *dst_ptr, int row, int col); | |||
| void GemmRowCol8x8Major2RowMajorInt8(int8_t *src_ptr, int8_t *dst_ptr, int row, int col); | |||
| void Gemm8x8Int8(const int8_t *lhs_data, const int8_t *rhs_data, const int8_t *bias_data, int8_t *output_data, | |||
| int depth, FcQuantArg *params); | |||
| void GemmInt8(const int8_t *input_data, const int8_t *weights_data, const int8_t *bias_data, int8_t *output_data, | |||
| int row_8, int col_8, int depth, FcQuantArg *params); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_MATMUL_H_ | |||
| #endif // MINDSPORE_LITE_SRC_BACKEND_ARM_OPCLIB_INT8_MATMUL_H_ | |||
| @@ -54,7 +54,8 @@ struct FcQuantArg { | |||
| QuantArg output; | |||
| int32_t out_act_min; | |||
| int32_t out_act_max; | |||
| int32_t output_shift; | |||
| int32_t left_shift; | |||
| int32_t right_shift; | |||
| int32_t quant_multiplier; | |||
| }; | |||
| @@ -0,0 +1,144 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include "utils/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/src/runtime/kernel/arm/int8/fullconnection_int8.h" | |||
| #include "mindspore/lite/src/runtime/kernel/arm/opclib/int8/matmul.h" | |||
| #include "mindspore/lite/src/runtime/kernel/arm/opclib/common_func.h" | |||
| #include "mindspore/lite/src/kernel_registry.h" | |||
| #include "mindspore/lite/src/lite_kernel.h" | |||
| namespace mindspore { | |||
| using lite::tensor::Tensor; | |||
| class TestFcInt8 : public mindspore::Common { | |||
| public: | |||
| TestFcInt8(){} | |||
| }; | |||
| void Quantize(float *input_data, int length, float scale, int zero_point, int8_t *output_data) { | |||
| for (int i = 0; i < length; ++i) { | |||
| int8_t q = static_cast<int8_t>(std::max<float>( | |||
| std::numeric_limits<int8_t>::min(), | |||
| std::min<float>(std::numeric_limits<int8_t>::max(), std::round(zero_point + (input_data[i] / scale))))); | |||
| output_data[i] = q; | |||
| } | |||
| } | |||
| void Dequantize(int8_t *input_data, int length, float scale, int zero_point, float *output_data) { | |||
| for (int i = 0; i < length; ++i) { | |||
| output_data[i] = scale * (input_data[i] - zero_point); | |||
| } | |||
| } | |||
| int FcInt8TestInit(std::vector<lite::tensor::Tensor *> *inputs_, std::vector<lite::tensor::Tensor *> *outputs_, | |||
| MatMulParameter *matmal_param, float **correct, double *scale, int *zeropoint) { | |||
| float input_max = 20; | |||
| float input_min = -20; | |||
| float weight_max = 1; | |||
| float weight_min = -1; | |||
| float output_max = 20; | |||
| float output_min = -20; | |||
| double input_scale = | |||
| (input_max - input_min) / (std::numeric_limits<int8_t>::max() - std::numeric_limits<int8_t>::min()); | |||
| int input_zp = std::numeric_limits<int8_t>::max() - input_max / input_scale; | |||
| double weight_scale = | |||
| (weight_max - weight_min) / (std::numeric_limits<int8_t>::max() - std::numeric_limits<int8_t>::min()); | |||
| int weight_zp = std::numeric_limits<int8_t>::max() - weight_max / weight_scale; | |||
| double output_scale = | |||
| (output_max - output_min) / (std::numeric_limits<int8_t>::max() - std::numeric_limits<int8_t>::min()); | |||
| int output_zp = std::numeric_limits<int8_t>::max() - output_max / output_scale; | |||
| *scale = output_scale; | |||
| *zeropoint = output_zp; | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {2, 2, 2, 2}, schema::Format_NHWC, static_cast<schema::NodeType>(1)); | |||
| in_t->MallocData(); | |||
| float in[] = {-3.2366564, -4.7733846, -7.8329225, 16.146885, 5.060793, -6.1471, -1.7680453, -6.5721383, | |||
| 17.87506, -5.1192183, 10.742863, 1.4536934, 19.693445, 19.45783, 5.063163, 0.5234792}; | |||
| Quantize(in, in_t->ElementsNum(), input_scale, input_zp, reinterpret_cast<int8_t *>(in_t->Data())); | |||
| auto in_quant_arg = new mindspore::lite::tensor::QuantArg(); | |||
| in_quant_arg->zeroPoint = input_zp; | |||
| in_quant_arg->scale = input_scale; | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeInt8, {3, 8}, schema::Format_NHWC, static_cast<schema::NodeType>(1)); | |||
| weight_t->MallocData(); | |||
| float weight[] = {-0.24438887, 0.06738146, -0.8169129, 0.21510671, -0.012470592, -0.053063435, | |||
| 0.6050155, 0.8656233, 0.12911413, -0.028635843, -0.034080597, -0.10622552, | |||
| -0.012254699, -0.01312836, 0.25241964, -0.4706142, 0.2451482, -0.9558459, | |||
| 0.4481974, 0.33251503, -0.011705584, -0.1720293, -0.39410214, -0.73637343}; | |||
| Quantize(weight, weight_t->ElementsNum(), weight_scale, weight_zp, reinterpret_cast<int8_t *>(weight_t->Data())); | |||
| auto weight_quant_arg = new mindspore::lite::tensor::QuantArg(); | |||
| weight_quant_arg->zeroPoint = weight_zp; | |||
| weight_quant_arg->scale = weight_scale; | |||
| weight_t->AddQuantParam(*weight_quant_arg); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *bias_t = new Tensor(kNumberTypeInt32, {3}, schema::Format_NHWC, static_cast<schema::NodeType>(1)); | |||
| bias_t->MallocData(); | |||
| memset(bias_t->Data(), 0, sizeof(int) * bias_t->ElementsNum()); | |||
| inputs_->push_back(bias_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {2, 3}, schema::Format_NHWC, static_cast<schema::NodeType>(1)); | |||
| out_t->MallocData(); | |||
| auto output_quant_arg = new mindspore::lite::tensor::QuantArg(); | |||
| output_quant_arg->zeroPoint = output_zp; | |||
| output_quant_arg->scale = output_scale; | |||
| out_t->AddQuantParam(*output_quant_arg); | |||
| outputs_->push_back(out_t); | |||
| *correct = reinterpret_cast<float *>(malloc(out_t->ElementsNum() * sizeof(float))); | |||
| float nchw_co[] = {3.84586822, 0.93586633, 12.16212629, -10.93835061, 2.46887183, 8.61480108}; | |||
| memcpy(*correct, nchw_co, out_t->ElementsNum() * sizeof(float)); | |||
| matmal_param->b_transpose_ = true; | |||
| matmal_param->a_transpose_ = false; | |||
| matmal_param->has_bias_ = true; | |||
| matmal_param->minf_ = -FLT_MAX; | |||
| matmal_param->maxf_ = FLT_MAX; | |||
| return out_t->ElementsNum(); | |||
| } | |||
| TEST_F(TestFcInt8, fcint8) { | |||
| std::vector<lite::tensor::Tensor *> inputs_; | |||
| std::vector<lite::tensor::Tensor *> outputs_; | |||
| auto matmul_param = new MatMulParameter(); | |||
| float *correct; | |||
| double output_scale; | |||
| int output_zp; | |||
| int total_size = FcInt8TestInit(&inputs_, &outputs_, matmul_param, &correct, &output_scale, &output_zp); | |||
| lite::Context *ctx = new lite::Context; | |||
| ctx->threadNum = 2; | |||
| kernel::FullconnectionInt8CPUKernel *fc = | |||
| new kernel::FullconnectionInt8CPUKernel(reinterpret_cast<OpParameter *>(matmul_param), inputs_, outputs_, ctx); | |||
| fc->Init(); | |||
| fc->Run(); | |||
| float fout[6] = {0}; | |||
| Dequantize(reinterpret_cast<int8_t *>(outputs_[0]->Data()), outputs_[0]->ElementsNum(), output_scale, output_zp, | |||
| fout); | |||
| CompareOutputData(fout, correct, 6, 0.2); | |||
| delete matmul_param; | |||
| delete fc; | |||
| for (auto t : inputs_) delete t; | |||
| for (auto t : outputs_) delete t; | |||
| free(correct); | |||
| } | |||
| } // namespace mindspore | |||