Browse Source

!10596 Add export.py to textcnn (PR to master)

From: @penny369
Reviewed-by: @guoqi1024,@pandoublefeng
Signed-off-by: @guoqi1024
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 5 years ago
parent
commit
528f4ddd33
3 changed files with 60 additions and 58 deletions
  1. +2
    -57
      model_zoo/official/cv/xception/train.py
  2. +2
    -1
      model_zoo/official/nlp/textcnn/README.md
  3. +56
    -0
      model_zoo/official/nlp/textcnn/export.py

+ 2
- 57
model_zoo/official/cv/xception/train.py View File

@@ -14,15 +14,13 @@
# ============================================================================ # ============================================================================
"""train Xception.""" """train Xception."""
import os import os
import time
import argparse import argparse
import numpy as np


from mindspore import context from mindspore import context
from mindspore import Tensor from mindspore import Tensor
from mindspore.nn.optim.momentum import Momentum from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.loss_scale_manager import FixedLossScaleManager
@@ -37,59 +35,6 @@ from src.loss import CrossEntropySmooth


set_seed(1) set_seed(1)


class Monitor(Callback):
"""
Monitor loss and time.

Args:
lr_init (numpy array): train lr

Returns:
None

Examples:
>>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
"""

def __init__(self, lr_init=None):
super(Monitor, self).__init__()
self.lr_init = lr_init
self.lr_init_len = len(lr_init)

def epoch_begin(self, run_context):
self.losses = []
self.epoch_time = time.time()

def epoch_end(self, run_context):
cb_params = run_context.original_args()

epoch_mseconds = (time.time() - self.epoch_time) * 1000
per_step_mseconds = epoch_mseconds / cb_params.batch_num
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
per_step_mseconds,
np.mean(self.losses)))

def step_begin(self, run_context):
self.step_time = time.time()

def step_end(self, run_context):
cb_params = run_context.original_args()
step_mseconds = (time.time() - self.step_time) * 1000
step_loss = cb_params.net_outputs

if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
step_loss = step_loss[0]
if isinstance(step_loss, Tensor):
step_loss = np.mean(step_loss.asnumpy())

self.losses.append(step_loss)
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num

print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
cb_params.cur_epoch_num - 1 + config.finish_epoch, cb_params.epoch_num + config.finish_epoch,
cur_step_in_epoch, cb_params.batch_num, step_loss,
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True)

if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser(description='image classification training') parser = argparse.ArgumentParser(description='image classification training')
parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training') parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
@@ -153,7 +98,7 @@ if __name__ == '__main__':
amp_level='O3', keep_batchnorm_fp32=True) amp_level='O3', keep_batchnorm_fp32=True)


# define callbacks # define callbacks
cb = [Monitor(lr_init=lr.asnumpy())]
cb = [TimeMonitor(), LossMonitor()]
if config.save_checkpoint: if config.save_checkpoint:
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(rank) + '/') save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(rank) + '/')
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size, config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,


+ 2
- 1
model_zoo/official/nlp/textcnn/README.md View File

@@ -83,6 +83,7 @@ After installing MindSpore via the official website, you can start training and
│ ├── config.py // parameter configuration │ ├── config.py // parameter configuration
├── train.py // training script ├── train.py // training script
├── eval.py // evaluation script ├── eval.py // evaluation script
├── export.py // export checkpoint to other format file
``` ```


## [Script Parameters](#contents) ## [Script Parameters](#contents)
@@ -175,4 +176,4 @@ For more configuration details, please refer the script `config.py`.


# [ModelZoo Homepage](#contents) # [ModelZoo Homepage](#contents)


Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

+ 56
- 0
model_zoo/official/nlp/textcnn/export.py View File

@@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air, onnx, mindir models#################
python export.py
"""
import argparse
import numpy as np

from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context

from src.config import cfg
from src.textcnn import TextCNN
from src.dataset import MovieReview

parser = argparse.ArgumentParser(description='TextCNN export')
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--ckpt_file", type=str, required=True, help="checkpoint file path.")
parser.add_argument("--file_name", type=str, default="textcnn", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
help="device target")
parser.add_argument('--dataset_name', type=str, default='MR', choices=['MR'],
help='dataset name.')

args = parser.parse_args()

context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)

if __name__ == '__main__':

if args.dataset_name == 'MR':
instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
else:
raise ValueError("dataset is not support.")

net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
num_classes=cfg.num_classes, vec_length=cfg.vec_length)

param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(net, param_dict)

input_arr = Tensor(np.ones([cfg.batch_size, cfg.word_len], np.int32))
export(net, input_arr, file_name=args.file_name, file_format=args.file_format)

Loading…
Cancel
Save