| @@ -45,8 +45,8 @@ TEST_F(MindDataTestPipeline, TestAlbumBasic) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -100,8 +100,8 @@ TEST_F(MindDataTestPipeline, TestAlbumBasicWithPipeline) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -151,13 +151,11 @@ TEST_F(MindDataTestPipeline, TestAlbumDecode) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| /* | |||
| auto image = row["image"]; | |||
| auto shape = image->shape(); | |||
| MS_LOG(INFO) << "Tensor image shape size: " << shape.Size(); | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| EXPECT_GT(shape.Size(), 1); // Verify decode=true took effect | |||
| */ | |||
| auto shape = image.Shape(); | |||
| MS_LOG(INFO) << "Tensor image shape size: " << shape.size(); | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| EXPECT_GT(shape.size(), 1); // Verify decode=true took effect | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -189,8 +187,8 @@ TEST_F(MindDataTestPipeline, TestAlbumNumSamplers) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -48,8 +48,8 @@ TEST_F(MindDataTestPipeline, TestCifar10Dataset) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -103,8 +103,8 @@ TEST_F(MindDataTestPipeline, TestCifar10DatasetWithPipeline) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -187,8 +187,8 @@ TEST_F(MindDataTestPipeline, TestCifar100Dataset) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -53,12 +53,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetAFQMC) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence1"]; | |||
| auto text = row["sentence1"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -134,8 +134,8 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetBasic) { | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence1"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -190,8 +190,8 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetBasicWithPipeline) { | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence1"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -242,12 +242,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetCMNLI) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence1"]; | |||
| auto text = row["sentence1"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -283,12 +283,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetCSL) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["abst"]; | |||
| auto text = row["abst"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -322,8 +322,8 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetDistribution) { | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence1"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -424,12 +424,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetIFLYTEK) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence"]; | |||
| auto text = row["sentence"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -602,13 +602,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetShuffleGlobal) { | |||
| // "蚂蚁借呗等额还款能否换成先息后本"}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence1"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["sentence1"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -648,12 +647,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetTNEWS) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["sentence"]; | |||
| auto text = row["sentence"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -690,12 +689,12 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetWSC) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| auto text = row["text"]; | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| // EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -45,12 +45,12 @@ TEST_F(MindDataTestPipeline, TestCocoDefault) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto bbox = row["bbox"]; | |||
| // auto category_id = row["category_id"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor bbox shape: " << bbox->shape(); | |||
| // MS_LOG(INFO) << "Tensor category_id shape: " << category_id->shape(); | |||
| auto image = row["image"]; | |||
| auto bbox = row["bbox"]; | |||
| auto category_id = row["category_id"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor bbox shape: " << bbox.Shape(); | |||
| MS_LOG(INFO) << "Tensor category_id shape: " << category_id.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -102,12 +102,12 @@ TEST_F(MindDataTestPipeline, TestCocoDefaultWithPipeline) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto bbox = row["bbox"]; | |||
| // auto category_id = row["category_id"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor bbox shape: " << bbox->shape(); | |||
| // MS_LOG(INFO) << "Tensor category_id shape: " << category_id->shape(); | |||
| auto image = row["image"]; | |||
| auto bbox = row["bbox"]; | |||
| auto category_id = row["category_id"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor bbox shape: " << bbox.Shape(); | |||
| MS_LOG(INFO) << "Tensor category_id shape: " << category_id.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -1,4 +1,3 @@ | |||
| /** | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| @@ -18,8 +17,6 @@ | |||
| #include "minddata/dataset/include/datasets.h" | |||
| using namespace mindspore::dataset; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorShape; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| @@ -43,14 +40,15 @@ TEST_F(MindDataTestPipeline, TestIteratorEmptyColumn) { | |||
| // Iterate the dataset and get each row | |||
| std::vector<mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| // TensorShape expect0({32, 32, 3}); | |||
| // TensorShape expect1({}); | |||
| std::vector<int64_t> expect_image = {32, 32, 3}; | |||
| std::vector<int64_t> expect_label = {}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| // EXPECT_EQ(expect0, row[0]->shape()); | |||
| // EXPECT_EQ(expect1, row[1]->shape()); | |||
| MS_LOG(INFO) << "row[0]:" << row[0].Shape() << ", row[1]:" << row[1].Shape(); | |||
| EXPECT_EQ(expect_image, row[0].Shape()); | |||
| EXPECT_EQ(expect_label, row[1].Shape()); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -82,14 +80,14 @@ TEST_F(MindDataTestPipeline, TestIteratorOneColumn) { | |||
| // Iterate the dataset and get each row | |||
| std::vector<mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| // TensorShape expect({2, 28, 28, 1}); | |||
| std::vector<int64_t> expect_image = {2, 28, 28, 1}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // for (auto &v : row) { | |||
| // MS_LOG(INFO) << "image shape:" << v->shape(); | |||
| // EXPECT_EQ(expect, v->shape()); | |||
| // } | |||
| for (auto &v : row) { | |||
| MS_LOG(INFO) << "image shape:" << v.Shape(); | |||
| EXPECT_EQ(expect_image, v.Shape()); | |||
| } | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -120,16 +118,15 @@ TEST_F(MindDataTestPipeline, TestIteratorReOrder) { | |||
| // Iterate the dataset and get each row | |||
| std::vector<mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| // TensorShape expect0({32, 32, 3}); | |||
| // TensorShape expect1({}); | |||
| std::vector<int64_t> expect_image = {32, 32, 3}; | |||
| std::vector<int64_t> expect_label = {}; | |||
| // Check if we will catch "label" before "image" in row | |||
| // std::vector<std::string> expect = {"label", "image"}; | |||
| // Check "label" before "image" in row | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| // EXPECT_EQ(expect1, row[0]->shape()); | |||
| // EXPECT_EQ(expect0, row[1]->shape()); | |||
| MS_LOG(INFO) << "row[0]:" << row[0].Shape() << ", row[1]:" << row[1].Shape(); | |||
| EXPECT_EQ(expect_label, row[0].Shape()); | |||
| EXPECT_EQ(expect_image, row[1].Shape()); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -161,20 +158,19 @@ TEST_F(MindDataTestPipeline, TestIteratorTwoColumns) { | |||
| // Iterate the dataset and get each row | |||
| std::vector<mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| // std::vector<TensorShape> expect = {TensorShape({173673}), TensorShape({1, 4}), TensorShape({173673}), | |||
| // TensorShape({1, 4}), TensorShape({147025}), TensorShape({1, 4}), | |||
| // TensorShape({211653}), TensorShape({1, 4})}; | |||
| std::vector<std::vector<int64_t>> expect = {{173673}, {1, 4}, {173673}, {1, 4}, | |||
| {147025}, {1, 4}, {211653}, {1, 4}}; | |||
| uint64_t i = 0; | |||
| // uint64_t j = 0; | |||
| uint64_t j = 0; | |||
| while (row.size() != 0) { | |||
| // MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| // EXPECT_EQ(2, row.size()); | |||
| // EXPECT_EQ(expect[j++], row[0]->shape()); | |||
| // EXPECT_EQ(expect[j++], row[1]->shape()); | |||
| MS_LOG(INFO) << "row[0]:" << row[0].Shape() << ", row[1]:" << row[1].Shape(); | |||
| EXPECT_EQ(2, row.size()); | |||
| EXPECT_EQ(expect[j++], row[0].Shape()); | |||
| EXPECT_EQ(expect[j++], row[1].Shape()); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| // j = (j == expect.size()) ? 0 : j; | |||
| j = (j == expect.size()) ? 0 : j; | |||
| } | |||
| EXPECT_EQ(i, 8); | |||
| @@ -222,8 +218,8 @@ TEST_F(MindDataTestPipeline, TestIteratorNumEpoch) { | |||
| EXPECT_EQ(inner_row_cnt, random_data_num_row); | |||
| } | |||
| EXPECT_EQ(total_row_cnt, random_data_num_row * num_epochs); | |||
| // this will go beyond the random_data_num_row*num_epoch limit, hence error code is expected | |||
| EXPECT_FALSE(iter->GetNextRow(&row)); | |||
| // This will go beyond the random_data_num_row*num_epoch limit, hence error code is expected | |||
| EXPECT_ERROR(iter->GetNextRow(&row)); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| @@ -43,8 +43,8 @@ TEST_F(MindDataTestPipeline, TestManifestBasic) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -95,8 +95,8 @@ TEST_F(MindDataTestPipeline, TestManifestBasicWithPipeline) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -162,11 +162,11 @@ TEST_F(MindDataTestPipeline, TestManifestDecode) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // auto shape = image->shape(); | |||
| // MS_LOG(INFO) << "Tensor image shape size: " << shape.Size(); | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // EXPECT_GT(shape.Size(), 1); // Verify decode=true took effect | |||
| auto image = row["image"]; | |||
| auto shape = image.Shape(); | |||
| MS_LOG(INFO) << "Tensor image shape size: " << shape.size(); | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| EXPECT_GT(shape.size(), 1); // Verify decode=true took effect | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -196,8 +196,8 @@ TEST_F(MindDataTestPipeline, TestManifestEval) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -241,8 +241,8 @@ TEST_F(MindDataTestPipeline, TestManifestClassIndex) { | |||
| // int32_t label_idx = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| // row["label"]->GetItemAt<int32_t>(&label_idx, {}); | |||
| // MS_LOG(INFO) << "Tensor label value: " << label_idx; | |||
| // auto label_it = std::find(expected_label.begin(), expected_label.end(), label_idx); | |||
| @@ -276,8 +276,8 @@ TEST_F(MindDataTestPipeline, TestManifestNumSamplers) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -246,7 +246,7 @@ TEST_F(MindDataTestPipeline, TestMindDataSuccess6) { | |||
| EXPECT_NE(ds5, nullptr); | |||
| std::vector<std::shared_ptr<Dataset>> ds = {ds1, ds2, ds3, ds4, ds5, ds6}; | |||
| // std::vector<int32_t> expected_samples = {5, 5, 2, 3, 3, 2}; | |||
| std::vector<int32_t> expected_samples = {5, 5, 2, 3, 3, 2}; | |||
| for (int32_t i = 0; i < ds.size(); i++) { | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -258,13 +258,13 @@ TEST_F(MindDataTestPipeline, TestMindDataSuccess6) { | |||
| std::unordered_map<std::string, mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| // uint64_t j = 0; | |||
| // while (row.size() != 0) { | |||
| // j++; | |||
| // MS_LOG(INFO) << "Tensor label: " << *row["label"]; | |||
| // iter->GetNextRow(&row); | |||
| // } | |||
| // EXPECT_EQ(j, expected_samples[i]); | |||
| uint64_t j = 0; | |||
| while (row.size() != 0) { | |||
| j++; | |||
| // MS_LOG(INFO) << "Tensor label: " << *row["label"]; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(j, expected_samples[i]); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| @@ -101,8 +101,8 @@ TEST_F(MindDataTestPipeline, TestBatchAndRepeat) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -137,8 +137,8 @@ TEST_F(MindDataTestPipeline, TestBucketBatchByLengthSuccess1) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // 2 batches of size 5 | |||
| @@ -174,8 +174,8 @@ TEST_F(MindDataTestPipeline, TestBucketBatchByLengthSuccess2) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // With 2 boundaries, 3 buckets are created | |||
| @@ -486,8 +486,8 @@ TEST_F(MindDataTestPipeline, TestConcatSuccess) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -566,8 +566,8 @@ TEST_F(MindDataTestPipeline, TestConcatSuccess2) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -780,8 +780,8 @@ TEST_F(MindDataTestPipeline, TestImageFolderBatchAndRepeat) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -917,8 +917,8 @@ TEST_F(MindDataTestPipeline, TestProjectMap) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1055,9 +1055,9 @@ TEST_F(MindDataTestPipeline, TestProjectMapAutoInjection) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // EXPECT_EQ(image->shape()[0], 30); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| // EXPECT_EQ(image.Shape()[0], 30); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1177,8 +1177,8 @@ TEST_F(MindDataTestPipeline, TestRenameSuccess) { | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["col1"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["col1"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1221,8 +1221,8 @@ TEST_F(MindDataTestPipeline, TestRepeatDefault) { | |||
| break; | |||
| } | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1260,8 +1260,8 @@ TEST_F(MindDataTestPipeline, TestRepeatOne) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1344,8 +1344,8 @@ TEST_F(MindDataTestPipeline, TestShuffleDataset) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1380,8 +1380,8 @@ TEST_F(MindDataTestPipeline, TestSkipDataset) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| MS_LOG(INFO) << "Number of rows: " << i; | |||
| @@ -1425,8 +1425,8 @@ TEST_F(MindDataTestPipeline, TestSkipTakeRepeat) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| MS_LOG(INFO) << "Number of rows: " << i; | |||
| @@ -1497,8 +1497,8 @@ TEST_F(MindDataTestPipeline, TestTakeDatasetDefault) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| MS_LOG(INFO) << "Number of rows: " << i; | |||
| @@ -1578,8 +1578,8 @@ TEST_F(MindDataTestPipeline, TestTakeDatasetNormal) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| MS_LOG(INFO) << "Number of rows: " << i; | |||
| @@ -1632,8 +1632,8 @@ TEST_F(MindDataTestPipeline, TestTensorOpsAndMap) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1751,8 +1751,8 @@ TEST_F(MindDataTestPipeline, TestZipSuccess) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1843,8 +1843,8 @@ TEST_F(MindDataTestPipeline, TestZipSuccess2) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| // auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -54,10 +54,10 @@ TEST_F(MindDataTestPipeline, TestRandomDatasetBasic1) { | |||
| // Check if RandomDataOp read correct columns | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto label = row["label"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor label shape: " << label->shape(); | |||
| auto image = row["image"]; | |||
| auto label = row["label"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor label shape: " << label.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -112,10 +112,10 @@ TEST_F(MindDataTestPipeline, TestRandomDatasetBasicWithPipeline) { | |||
| // Check if RandomDataOp read correct columns | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto label = row["label"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor label shape: " << label->shape(); | |||
| auto image = row["image"]; | |||
| auto label = row["label"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor label shape: " << label.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -205,47 +205,52 @@ TEST_F(MindDataTestPipeline, TestRandomDatasetBasic3) { | |||
| std::unordered_map<std::string, mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| std::vector<int64_t> expect_num = {1}; | |||
| std::vector<int64_t> expect_1d = {2}; | |||
| std::vector<int64_t> expect_2d = {2, 2}; | |||
| std::vector<int64_t> expect_3d = {2, 2, 2}; | |||
| // Check if RandomDataOp read correct columns | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto col_sint16 = row["col_sint16"]; | |||
| // auto col_sint32 = row["col_sint32"]; | |||
| // auto col_sint64 = row["col_sint64"]; | |||
| // auto col_float = row["col_float"]; | |||
| // auto col_1d = row["col_1d"]; | |||
| // auto col_2d = row["col_2d"]; | |||
| // auto col_3d = row["col_3d"]; | |||
| // auto col_binary = row["col_binary"]; | |||
| // // validate shape | |||
| // ASSERT_EQ(col_sint16->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_sint32->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_sint64->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_float->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_1d->shape(), TensorShape({2})); | |||
| // ASSERT_EQ(col_2d->shape(), TensorShape({2, 2})); | |||
| // ASSERT_EQ(col_3d->shape(), TensorShape({2, 2, 2})); | |||
| // ASSERT_EQ(col_binary->shape(), TensorShape({1})); | |||
| // // validate Rank | |||
| // ASSERT_EQ(col_sint16->Rank(), 1); | |||
| // ASSERT_EQ(col_sint32->Rank(), 1); | |||
| // ASSERT_EQ(col_sint64->Rank(), 1); | |||
| // ASSERT_EQ(col_float->Rank(), 1); | |||
| // ASSERT_EQ(col_1d->Rank(), 1); | |||
| // ASSERT_EQ(col_2d->Rank(), 2); | |||
| // ASSERT_EQ(col_3d->Rank(), 3); | |||
| // ASSERT_EQ(col_binary->Rank(), 1); | |||
| // // validate type | |||
| // ASSERT_EQ(col_sint16->type(), DataType::DE_INT16); | |||
| // ASSERT_EQ(col_sint32->type(), DataType::DE_INT32); | |||
| // ASSERT_EQ(col_sint64->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_float->type(), DataType::DE_FLOAT32); | |||
| // ASSERT_EQ(col_1d->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_2d->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_3d->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_binary->type(), DataType::DE_UINT8); | |||
| auto col_sint16 = row["col_sint16"]; | |||
| auto col_sint32 = row["col_sint32"]; | |||
| auto col_sint64 = row["col_sint64"]; | |||
| auto col_float = row["col_float"]; | |||
| auto col_1d = row["col_1d"]; | |||
| auto col_2d = row["col_2d"]; | |||
| auto col_3d = row["col_3d"]; | |||
| auto col_binary = row["col_binary"]; | |||
| // Validate shape | |||
| ASSERT_EQ(col_sint16.Shape(), expect_num); | |||
| ASSERT_EQ(col_sint32.Shape(), expect_num); | |||
| ASSERT_EQ(col_sint64.Shape(), expect_num); | |||
| ASSERT_EQ(col_float.Shape(), expect_num); | |||
| ASSERT_EQ(col_1d.Shape(), expect_1d); | |||
| ASSERT_EQ(col_2d.Shape(), expect_2d); | |||
| ASSERT_EQ(col_3d.Shape(), expect_3d); | |||
| ASSERT_EQ(col_binary.Shape(), expect_num); | |||
| // Validate Rank | |||
| ASSERT_EQ(col_sint16.Shape().size(), 1); | |||
| ASSERT_EQ(col_sint32.Shape().size(), 1); | |||
| ASSERT_EQ(col_sint64.Shape().size(), 1); | |||
| ASSERT_EQ(col_float.Shape().size(), 1); | |||
| ASSERT_EQ(col_1d.Shape().size(), 1); | |||
| ASSERT_EQ(col_2d.Shape().size(), 2); | |||
| ASSERT_EQ(col_3d.Shape().size(), 3); | |||
| ASSERT_EQ(col_binary.Shape().size(), 1); | |||
| // Validate type | |||
| ASSERT_EQ(col_sint16.DataType(), mindspore::DataType::kNumberTypeInt16); | |||
| ASSERT_EQ(col_sint32.DataType(), mindspore::DataType::kNumberTypeInt32); | |||
| ASSERT_EQ(col_sint64.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_float.DataType(), mindspore::DataType::kNumberTypeFloat32); | |||
| ASSERT_EQ(col_1d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_2d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_3d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_binary.DataType(), mindspore::DataType::kNumberTypeUInt8); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -282,47 +287,52 @@ TEST_F(MindDataTestPipeline, TestRandomDatasetBasic4) { | |||
| std::unordered_map<std::string, mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| std::vector<int64_t> expect_num = {1}; | |||
| std::vector<int64_t> expect_1d = {2}; | |||
| std::vector<int64_t> expect_2d = {2, 2}; | |||
| std::vector<int64_t> expect_3d = {2, 2, 2}; | |||
| // Check if RandomDataOp read correct columns | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto col_sint16 = row["col_sint16"]; | |||
| // auto col_sint32 = row["col_sint32"]; | |||
| // auto col_sint64 = row["col_sint64"]; | |||
| // auto col_float = row["col_float"]; | |||
| // auto col_1d = row["col_1d"]; | |||
| // auto col_2d = row["col_2d"]; | |||
| // auto col_3d = row["col_3d"]; | |||
| // auto col_binary = row["col_binary"]; | |||
| // // validate shape | |||
| // ASSERT_EQ(col_sint16->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_sint32->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_sint64->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_float->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_1d->shape(), TensorShape({2})); | |||
| // ASSERT_EQ(col_2d->shape(), TensorShape({2, 2})); | |||
| // ASSERT_EQ(col_3d->shape(), TensorShape({2, 2, 2})); | |||
| // ASSERT_EQ(col_binary->shape(), TensorShape({1})); | |||
| // // validate Rank | |||
| // ASSERT_EQ(col_sint16->Rank(), 1); | |||
| // ASSERT_EQ(col_sint32->Rank(), 1); | |||
| // ASSERT_EQ(col_sint64->Rank(), 1); | |||
| // ASSERT_EQ(col_float->Rank(), 1); | |||
| // ASSERT_EQ(col_1d->Rank(), 1); | |||
| // ASSERT_EQ(col_2d->Rank(), 2); | |||
| // ASSERT_EQ(col_3d->Rank(), 3); | |||
| // ASSERT_EQ(col_binary->Rank(), 1); | |||
| // // validate type | |||
| // ASSERT_EQ(col_sint16->type(), DataType::DE_INT16); | |||
| // ASSERT_EQ(col_sint32->type(), DataType::DE_INT32); | |||
| // ASSERT_EQ(col_sint64->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_float->type(), DataType::DE_FLOAT32); | |||
| // ASSERT_EQ(col_1d->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_2d->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_3d->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_binary->type(), DataType::DE_UINT8); | |||
| auto col_sint16 = row["col_sint16"]; | |||
| auto col_sint32 = row["col_sint32"]; | |||
| auto col_sint64 = row["col_sint64"]; | |||
| auto col_float = row["col_float"]; | |||
| auto col_1d = row["col_1d"]; | |||
| auto col_2d = row["col_2d"]; | |||
| auto col_3d = row["col_3d"]; | |||
| auto col_binary = row["col_binary"]; | |||
| // Validate shape | |||
| ASSERT_EQ(col_sint16.Shape(), expect_num); | |||
| ASSERT_EQ(col_sint32.Shape(), expect_num); | |||
| ASSERT_EQ(col_sint64.Shape(), expect_num); | |||
| ASSERT_EQ(col_float.Shape(), expect_num); | |||
| ASSERT_EQ(col_1d.Shape(), expect_1d); | |||
| ASSERT_EQ(col_2d.Shape(), expect_2d); | |||
| ASSERT_EQ(col_3d.Shape(), expect_3d); | |||
| ASSERT_EQ(col_binary.Shape(), expect_num); | |||
| // Validate Rank | |||
| ASSERT_EQ(col_sint16.Shape().size(), 1); | |||
| ASSERT_EQ(col_sint32.Shape().size(), 1); | |||
| ASSERT_EQ(col_sint64.Shape().size(), 1); | |||
| ASSERT_EQ(col_float.Shape().size(), 1); | |||
| ASSERT_EQ(col_1d.Shape().size(), 1); | |||
| ASSERT_EQ(col_2d.Shape().size(), 2); | |||
| ASSERT_EQ(col_3d.Shape().size(), 3); | |||
| ASSERT_EQ(col_binary.Shape().size(), 1); | |||
| // Validate type | |||
| ASSERT_EQ(col_sint16.DataType(), mindspore::DataType::kNumberTypeInt16); | |||
| ASSERT_EQ(col_sint32.DataType(), mindspore::DataType::kNumberTypeInt32); | |||
| ASSERT_EQ(col_sint64.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_float.DataType(), mindspore::DataType::kNumberTypeFloat32); | |||
| ASSERT_EQ(col_1d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_2d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_3d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_binary.DataType(), mindspore::DataType::kNumberTypeUInt8); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -359,29 +369,32 @@ TEST_F(MindDataTestPipeline, TestRandomDatasetBasic5) { | |||
| std::unordered_map<std::string, mindspore::MSTensor> row; | |||
| iter->GetNextRow(&row); | |||
| std::vector<int64_t> expect_num = {1}; | |||
| std::vector<int64_t> expect_1d = {2}; | |||
| // Check if RandomDataOp read correct columns | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| EXPECT_EQ(row.size(), 3); | |||
| // auto col_sint32 = row["col_sint32"]; | |||
| // auto col_sint64 = row["col_sint64"]; | |||
| // auto col_1d = row["col_1d"]; | |||
| auto col_sint32 = row["col_sint32"]; | |||
| auto col_sint64 = row["col_sint64"]; | |||
| auto col_1d = row["col_1d"]; | |||
| // // validate shape | |||
| // ASSERT_EQ(col_sint32->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_sint64->shape(), TensorShape({1})); | |||
| // ASSERT_EQ(col_1d->shape(), TensorShape({2})); | |||
| // Validate shape | |||
| ASSERT_EQ(col_sint32.Shape(), expect_num); | |||
| ASSERT_EQ(col_sint64.Shape(), expect_num); | |||
| ASSERT_EQ(col_1d.Shape(), expect_1d); | |||
| // // validate Rank | |||
| // ASSERT_EQ(col_sint32->Rank(), 1); | |||
| // ASSERT_EQ(col_sint64->Rank(), 1); | |||
| // ASSERT_EQ(col_1d->Rank(), 1); | |||
| // Validate Rank | |||
| ASSERT_EQ(col_sint32.Shape().size(), 1); | |||
| ASSERT_EQ(col_sint64.Shape().size(), 1); | |||
| ASSERT_EQ(col_1d.Shape().size(), 1); | |||
| // // validate type | |||
| // ASSERT_EQ(col_sint32->type(), DataType::DE_INT32); | |||
| // ASSERT_EQ(col_sint64->type(), DataType::DE_INT64); | |||
| // ASSERT_EQ(col_1d->type(), DataType::DE_INT64); | |||
| // Validate type | |||
| ASSERT_EQ(col_sint32.DataType(), mindspore::DataType::kNumberTypeInt32); | |||
| ASSERT_EQ(col_sint64.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| ASSERT_EQ(col_1d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -58,8 +58,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetBasic) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -128,8 +128,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetBasicWithPipeline) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| @@ -315,8 +315,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFalse1A) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -373,8 +373,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFalse1B) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -430,8 +430,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFalse4Shard) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -490,8 +490,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles1A) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -550,8 +550,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles1B) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -609,8 +609,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles4) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -664,8 +664,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1A) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -722,8 +722,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1B) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -780,8 +780,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal4) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto text = row["text"]; | |||
| // MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| auto text = row["text"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text.Shape(); | |||
| // std::string_view sv; | |||
| // text->GetItemAt(&sv, {0}); | |||
| // std::string ss(sv); | |||
| @@ -70,9 +70,9 @@ TEST_F(MindDataTestPipeline, TestTFRecordDatasetBasic) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| auto image = row["image"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -279,23 +279,30 @@ TEST_F(MindDataTestPipeline, TestTFRecordDatasetSchemaObj) { | |||
| EXPECT_NE(row.find("col_float"), row.end()); | |||
| EXPECT_NE(row.find("col_2d"), row.end()); | |||
| std::vector<int64_t> expect_num = {1}; | |||
| std::vector<int64_t> expect_2d = {2, 2}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto col_sint16 = row["col_sint16"]; | |||
| // auto col_float = row["col_float"]; | |||
| // auto col_2d = row["col_2d"]; | |||
| auto col_sint16 = row["col_sint16"]; | |||
| auto col_float = row["col_float"]; | |||
| auto col_2d = row["col_2d"]; | |||
| // Validate shape | |||
| ASSERT_EQ(col_sint16.Shape(), expect_num); | |||
| ASSERT_EQ(col_float.Shape(), expect_num); | |||
| ASSERT_EQ(col_2d.Shape(), expect_2d); | |||
| // EXPECT_EQ(col_sint16->shape(), TensorShape({1})); | |||
| // EXPECT_EQ(col_float->shape(), TensorShape({1})); | |||
| // EXPECT_EQ(col_2d->shape(), TensorShape({2, 2})); | |||
| // Validate Rank | |||
| ASSERT_EQ(col_sint16.Shape().size(), 1); | |||
| ASSERT_EQ(col_float.Shape().size(), 1); | |||
| ASSERT_EQ(col_2d.Shape().size(), 2); | |||
| // EXPECT_EQ(col_sint16->Rank(), 1); | |||
| // EXPECT_EQ(col_float->Rank(), 1); | |||
| // EXPECT_EQ(col_2d->Rank(), 2); | |||
| // Validate type | |||
| ASSERT_EQ(col_sint16.DataType(), mindspore::DataType::kNumberTypeInt16); | |||
| ASSERT_EQ(col_float.DataType(), mindspore::DataType::kNumberTypeFloat32); | |||
| ASSERT_EQ(col_2d.DataType(), mindspore::DataType::kNumberTypeInt64); | |||
| // EXPECT_EQ(col_sint16->type(), DataType::DE_INT16); | |||
| // EXPECT_EQ(col_float->type(), DataType::DE_FLOAT32); | |||
| // EXPECT_EQ(col_2d->type(), DataType::DE_INT64); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -331,11 +338,11 @@ TEST_F(MindDataTestPipeline, TestTFRecordDatasetNoSchema) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto label = row["label"]; | |||
| auto image = row["image"]; | |||
| auto label = row["label"]; | |||
| // MS_LOG(INFO) << "Shape of column [image]:" << image->shape(); | |||
| // MS_LOG(INFO) << "Shape of column [label]:" << label->shape(); | |||
| MS_LOG(INFO) << "Shape of column [image]:" << image.Shape(); | |||
| MS_LOG(INFO) << "Shape of column [label]:" << label.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -486,16 +493,16 @@ TEST_F(MindDataTestPipeline, TestIncorrectTFSchemaObject) { | |||
| EXPECT_NE(ds, nullptr); | |||
| auto itr = ds->CreateIterator(); | |||
| EXPECT_NE(itr, nullptr); | |||
| // TensorMap mp; | |||
| // this will fail due to the incorrect schema used | |||
| // EXPECT_FALSE(itr->GetNextRow(&mp)); | |||
| MSTensorMap mp; | |||
| // This will fail due to the incorrect schema used | |||
| EXPECT_ERROR(itr->GetNextRow(&mp)); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestIncorrectTFrecordFile) { | |||
| std::string path = datasets_root_path_ + "/test_tf_file_3_images2/datasetSchema.json"; | |||
| std::shared_ptr<Dataset> ds = TFRecord({path}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // the tf record file is incorrect, hence validate param will fail | |||
| // The tf record file is incorrect, hence validate param will fail | |||
| auto itr = ds->CreateIterator(); | |||
| EXPECT_EQ(itr, nullptr); | |||
| } | |||
| @@ -55,10 +55,10 @@ TEST_F(MindDataTestPipeline, TestVOCClassIndex) { | |||
| // uint32_t expect[] = {9, 9, 9, 1, 1, 0}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto label = row["label"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor label shape: " << label->shape(); | |||
| auto image = row["image"]; | |||
| auto label = row["label"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor label shape: " << label.Shape(); | |||
| // expect_label->SetItemAt({0, 0}, expect[i]); | |||
| // EXPECT_EQ(*label, *expect_label); | |||
| @@ -137,10 +137,10 @@ TEST_F(MindDataTestPipeline, TestVOCDetection) { | |||
| // uint32_t expect_num[] = {5, 5, 4, 3}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto label = row["label"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor label shape: " << label->shape(); | |||
| auto image = row["image"]; | |||
| auto label = row["label"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor label shape: " << label.Shape(); | |||
| // std::shared_ptr<Tensor> expect_image; | |||
| // Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image); | |||
| @@ -210,10 +210,10 @@ TEST_F(MindDataTestPipeline, TestVOCSegmentation) { | |||
| // std::string expect_file[] = {"32", "33", "39", "32", "33", "39"}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto target = row["target"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor target shape: " << target->shape(); | |||
| auto image = row["image"]; | |||
| auto target = row["target"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor target shape: " << target.Shape(); | |||
| // std::shared_ptr<Tensor> expect_image; | |||
| // Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image); | |||
| @@ -93,10 +93,10 @@ TEST_F(MindDataTestPipeline, TestCelebADefault) { | |||
| // Check if CelebAOp read correct images/attr | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| // auto image = row["image"]; | |||
| // auto attr = row["attr"]; | |||
| // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // MS_LOG(INFO) << "Tensor attr shape: " << attr->shape(); | |||
| auto image = row["image"]; | |||
| auto attr = row["attr"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image.Shape(); | |||
| MS_LOG(INFO) << "Tensor attr shape: " << attr.Shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -329,7 +329,7 @@ TEST_F(MindDataTestIRVision, TestSoftDvppDecodeResizeJpegFail) { | |||
| Status rc; | |||
| // CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values | |||
| // SoftDvppDecodeResizeJpeg: size must be a vector of one or two values | |||
| std::shared_ptr<TensorOperation> soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpegOperation({})); | |||
| rc = soft_dvpp_decode_resize_jpeg_op1->ValidateParams(); | |||
| EXPECT_ERROR(rc); | |||