Merge pull request !4297 from guozhijian/code_sync_incubator_f3c32baf_to_master_fcfc75a3_0811tags/v0.7.0-beta
| @@ -15,6 +15,7 @@ | |||
| """aicpu ops""" | |||
| from .init_data_set_queue import _init_data_set_queue_aicpu | |||
| from .embedding_lookup import _embedding_lookup_aicpu | |||
| from .padding import _padding_aicpu | |||
| from .dropout_genmask import _dropout_genmask_aicpu | |||
| from .get_next import _get_next_aicpu | |||
| from .print_tensor import _print_aicpu | |||
| @@ -43,3 +44,7 @@ from .laplace import _laplace_aicpu | |||
| from .strided_slice import _strided_slice_aicpu | |||
| from .strided_slice_grad import _strided_slice_grad_aicpu | |||
| from .end_of_sequence import _end_of_sequence_aicpu | |||
| from .fused_sparse_adam import _fused_sparse_adam_aicpu | |||
| from .fused_sparse_lazy_adam import _fused_sparse_lazy_adam_aicpu | |||
| from .fused_sparse_ftrl import _fused_sparse_ftrl_aicpu | |||
| from .fused_sparse_proximal_adagrad import _fused_sparse_proximal_adagrad_aicpu | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """FusedSparseAdam op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| fused_sparse_adam_op_info = AiCPURegOp("FusedSparseAdam") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .attr("use_locking", "bool") \ | |||
| .attr("use_nesterov", "bool") \ | |||
| .input(0, "var", "required") \ | |||
| .input(1, "m", "required") \ | |||
| .input(2, "v", "required") \ | |||
| .input(3, "beta1_power", "required") \ | |||
| .input(4, "beta2_power", "required") \ | |||
| .input(5, "lr", "required") \ | |||
| .input(6, "beta1", "required") \ | |||
| .input(7, "beta2", "required") \ | |||
| .input(8, "epsilon", "required") \ | |||
| .input(9, "grad", "required") \ | |||
| .input(10, "indices", "required") \ | |||
| .output(0, "var", "required") \ | |||
| .output(1, "m", "required") \ | |||
| .output(2, "v", "required") \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(fused_sparse_adam_op_info) | |||
| def _fused_sparse_adam_aicpu(): | |||
| """FusedSparseAdam aicpu register""" | |||
| return | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """FusedSparseFtrl op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| fused_sparse_ftrl_op_info = AiCPURegOp("FusedSparseFtrl") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .attr("lr", "float") \ | |||
| .attr("l1", "float") \ | |||
| .attr("l2", "float") \ | |||
| .attr("lr_power", "float") \ | |||
| .attr("use_locking", "bool") \ | |||
| .input(0, "var", "required") \ | |||
| .input(1, "accum", "required") \ | |||
| .input(2, "linear", "required") \ | |||
| .input(3, "grad", "required") \ | |||
| .input(4, "indices", "required") \ | |||
| .output(0, "var", "required") \ | |||
| .output(1, "accum", "required") \ | |||
| .output(2, "linear", "required") \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, | |||
| DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(fused_sparse_ftrl_op_info) | |||
| def _fused_sparse_ftrl_aicpu(): | |||
| """FusedSparseFtrl aicpu register""" | |||
| return | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """FusedSparseLazyAdam op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| fused_sparse_lazy_adam_op_info = AiCPURegOp("FusedSparseLazyAdam") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .attr("use_locking", "bool") \ | |||
| .attr("use_nesterov", "bool") \ | |||
| .input(0, "var", "required") \ | |||
| .input(1, "m", "required") \ | |||
| .input(2, "v", "required") \ | |||
| .input(3, "beta1_power", "required") \ | |||
| .input(4, "beta2_power", "required") \ | |||
| .input(5, "lr", "required") \ | |||
| .input(6, "beta1", "required") \ | |||
| .input(7, "beta2", "required") \ | |||
| .input(8, "epsilon", "required") \ | |||
| .input(9, "grad", "required") \ | |||
| .input(10, "indices", "required") \ | |||
| .output(0, "var", "required") \ | |||
| .output(1, "m", "required") \ | |||
| .output(2, "v", "required") \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(fused_sparse_lazy_adam_op_info) | |||
| def _fused_sparse_lazy_adam_aicpu(): | |||
| """FusedSparseLazyAdam aicpu register""" | |||
| return | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """FusedSparseProximalAdagrad op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| fused_sparse_proximal_adagrad_op_info = AiCPURegOp("FusedSparseProximalAdagrad") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .attr("use_locking", "bool") \ | |||
| .input(0, "var", "required") \ | |||
| .input(1, "accum", "required") \ | |||
| .input(2, "lr", "required") \ | |||
| .input(3, "l1", "required") \ | |||
| .input(4, "l2", "required") \ | |||
| .input(5, "grad", "required") \ | |||
| .input(6, "indices", "required") \ | |||
| .output(0, "var", "required") \ | |||
| .output(1, "accum", "required") \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, | |||
| DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default, | |||
| DataType.F32_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(fused_sparse_proximal_adagrad_op_info) | |||
| def _fused_sparse_proximal_adagrad_aicpu(): | |||
| """FusedSparseProximalAdagrad aicpu register""" | |||
| return | |||
| @@ -23,6 +23,7 @@ gamma_op_info = AiCPURegOp("Gamma") \ | |||
| .input(2, "beta", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .attr("seed2", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||
| .get_op_info() | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Padding op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| padding_op_info = AiCPURegOp("Padding") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .attr("pad_dim_size", "int") \ | |||
| .dtype_format(DataType.I8_Default, DataType.I8_Default) \ | |||
| .dtype_format(DataType.I16_Default, DataType.I16_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default) \ | |||
| .dtype_format(DataType.U8_Default, DataType.U8_Default) \ | |||
| .dtype_format(DataType.U16_Default, DataType.U16_Default) \ | |||
| .dtype_format(DataType.U32_Default, DataType.U32_Default) \ | |||
| .dtype_format(DataType.U64_Default, DataType.U64_Default) \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.F64_Default, DataType.F64_Default) \ | |||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(padding_op_info) | |||
| def _padding_aicpu(): | |||
| """Padding AiCPU register""" | |||
| return | |||
| @@ -22,6 +22,7 @@ poisson_op_info = AiCPURegOp("Poisson") \ | |||
| .input(1, "mean", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .attr("seed2", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.I32_NCHW) \ | |||
| .get_op_info() | |||
| @@ -23,6 +23,7 @@ uniform_int_op_info = AiCPURegOp("UniformInt") \ | |||
| .input(2, "b", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .attr("seed2", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW) \ | |||
| .get_op_info() | |||
| @@ -19,12 +19,11 @@ from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataTyp | |||
| uniform_real_op_info = AiCPURegOp("UniformReal") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "a", "required") \ | |||
| .input(2, "b", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||
| .attr("seed2", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW) \ | |||
| .get_op_info() | |||
| @op_info_register(uniform_real_op_info) | |||
| @@ -27,7 +27,7 @@ from .clip_ops import clip_by_value | |||
| from .multitype_ops.add_impl import hyper_add | |||
| from .multitype_ops.ones_like_impl import ones_like | |||
| from .multitype_ops.zeros_like_impl import zeros_like | |||
| from .random_ops import set_seed, normal, multinomial | |||
| from .random_ops import set_seed, normal, uniform, gamma, poisson, multinomial | |||
| __all__ = [ | |||
| @@ -50,5 +50,8 @@ __all__ = [ | |||
| 'zip_operation', | |||
| 'set_seed', | |||
| 'normal', | |||
| 'uniform', | |||
| 'gamma', | |||
| 'poisson', | |||
| 'multinomial', | |||
| 'clip_by_value',] | |||
| @@ -13,7 +13,7 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Operations for random number generatos.""" | |||
| """Operations for random number generators.""" | |||
| from .. import operations as P | |||
| from .. import functional as F | |||
| @@ -66,7 +66,6 @@ def get_seed(): | |||
| def normal(shape, mean, stddev, seed=0): | |||
| """ | |||
| Generates random numbers according to the Normal (or Gaussian) random number distribution. | |||
| It is defined as: | |||
| Args: | |||
| shape (tuple): The shape of random tensor to be generated. | |||
| @@ -137,10 +136,108 @@ def multinomial(inputs, num_sample=None, replacement=True, seed=0): | |||
| n_dist = shape(inputs)[-2] | |||
| a = Tensor(0.0, mstype.float32) | |||
| b = Tensor(1.0, mstype.float32) | |||
| uniform = P.UniformReal(seed=seed)((n_dist * num_sample,), a, b) | |||
| random_uniform = P.UniformReal(seed=seed)((n_dist * num_sample,), a, b) | |||
| if n_dist != 1: | |||
| uniform = reshape(uniform, (n_dist, num_sample)) | |||
| vals = P.RealDiv()(P.Log()(uniform), inputs + 1e-6) | |||
| random_uniform = reshape(random_uniform, (n_dist, num_sample)) | |||
| vals = P.RealDiv()(P.Log()(random_uniform), inputs + 1e-6) | |||
| _, indices = P.TopK()(vals, num_sample) | |||
| return indices | |||
| return P.Multinomial(seed=seed)(inputs, num_sample) | |||
| def uniform(shape, a, b, seed=0, dtype=mstype.float32): | |||
| """ | |||
| Generates random numbers according to the Uniform random number distribution. | |||
| Args: | |||
| shape (tuple): The shape of random tensor to be generated. | |||
| a (Tensor): The a distribution parameter. | |||
| It defines the minimum possibly generated value. With int32 or float32 data type. | |||
| If dtype is int32, only one number is allowed. | |||
| b (Tensor): The b distribution parameter. | |||
| It defines the maximum possibly generated value. With int32 or float32 data type. | |||
| If dtype is int32, only one number is allowed. | |||
| seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Returns: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b. | |||
| The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> a = Tensor(1.0, mstype.float32) | |||
| >>> b = Tensor(1.0, mstype.float32) | |||
| >>> output = C.uniform(shape, a, b, seed=5) | |||
| """ | |||
| a_dtype = F.dtype(a) | |||
| b_dtype = F.dtype(b) | |||
| const_utils.check_tensors_dtype_same(a_dtype, dtype, "uniform") | |||
| const_utils.check_tensors_dtype_same(b_dtype, dtype, "uniform") | |||
| seed1 = get_seed() | |||
| seed2 = seed | |||
| if const_utils.is_same_type(dtype, mstype.int32): | |||
| rnd = P.UniformInt(seed1, seed2) | |||
| value = rnd(shape, a, b) | |||
| else: | |||
| uniform_real = P.UniformReal(seed1, seed2) | |||
| rnd = uniform_real(shape) | |||
| value = rnd * (b - a) + a | |||
| return value | |||
| def gamma(shape, alpha, beta, seed=0): | |||
| """ | |||
| Generates random numbers according to the Gamma random number distribution. | |||
| Args: | |||
| shape (tuple): The shape of random tensor to be generated. | |||
| alpha (Tensor): The alpha α distribution parameter. With float32 data type. | |||
| beta (Tensor): The beta β distribution parameter. With float32 data type. | |||
| seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Returns: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of alpha and beta. | |||
| The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> alpha = Tensor(1.0, mstype.float32) | |||
| >>> beta = Tensor(1.0, mstype.float32) | |||
| >>> output = C.gamma(shape, alpha, beta, seed=5) | |||
| """ | |||
| alpha_dtype = F.dtype(alpha) | |||
| beta_dtype = F.dtype(beta) | |||
| const_utils.check_tensors_dtype_same(alpha_dtype, mstype.float32, "gamma") | |||
| const_utils.check_tensors_dtype_same(beta_dtype, mstype.float32, "gamma") | |||
| seed1 = get_seed() | |||
| seed2 = seed | |||
| random_gamma = P.Gamma(seed1, seed2) | |||
| value = random_gamma(shape, alpha, beta) | |||
| return value | |||
| def poisson(shape, mean, seed=0): | |||
| """ | |||
| Generates random numbers according to the Poisson random number distribution. | |||
| Args: | |||
| shape (tuple): The shape of random tensor to be generated. | |||
| mean (Tensor): The mean μ distribution parameter. With float32 data type. | |||
| seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Returns: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean. | |||
| The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> mean = Tensor(1.0, mstype.float32) | |||
| >>> output = C.poisson(shape, mean, seed=5) | |||
| """ | |||
| mean_dtype = F.dtype(mean) | |||
| const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "poisson") | |||
| seed1 = get_seed() | |||
| seed2 = seed | |||
| random_poisson = P.Poisson(seed1, seed2) | |||
| value = random_poisson(shape, mean) | |||
| return value | |||
| @@ -27,7 +27,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack, | |||
| Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue, | |||
| SameTypeShape, ScatterAdd, ScatterSub, ScatterMul, ScatterDiv, ScatterMax, ScatterMin, | |||
| ScatterUpdate, ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select, | |||
| Shape, Size, Slice, Split, TransShape, ParallelConcat, | |||
| Shape, Size, Slice, Split, TransShape, ParallelConcat, Padding, | |||
| ScatterNdAdd, ScatterNdSub, ScatterNonAliasingAdd, ReverseV2, Rint, | |||
| Squeeze, StridedSlice, Tile, TensorScatterUpdate, | |||
| Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentProd, | |||
| @@ -147,6 +147,7 @@ __all__ = [ | |||
| 'GatherV2', | |||
| 'SparseGatherV2', | |||
| 'EmbeddingLookup', | |||
| 'Padding', | |||
| 'Concat', | |||
| 'Pack', | |||
| 'Unpack', | |||
| @@ -645,6 +645,46 @@ class SparseGatherV2(GatherV2): | |||
| """ | |||
| class Padding(PrimitiveWithInfer): | |||
| """ | |||
| Extend the last dimension of input tensor from 1 to pad_dim_size, fill with 0. | |||
| Args: | |||
| pad_dim_size (int): The extend value of last dimension of x, must be positive. | |||
| Inputs: | |||
| - **x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The rank of x should be at least 2. | |||
| The last dimension of x should be 1. | |||
| Outputs: | |||
| Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. | |||
| Examples: | |||
| >>> x = Tensor(np.array([[8], [10]]), mindspore.float32) | |||
| >>> pad_dim_size = 4 | |||
| >>> out = P.Padding(pad_dim_size)(x) | |||
| [[8, 0, 0, 0], [10, 0, 0, 0]] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, pad_dim_size=8): | |||
| """init padding""" | |||
| validator.check_value_type("pad_dim_size", pad_dim_size, [int], self.name) | |||
| validator.check_integer("pad_dim_size", pad_dim_size, 0, Rel.GT, self.name) | |||
| self.pad_dim_size = pad_dim_size | |||
| def __infer__(self, x): | |||
| validator.check_subclass("x", x['dtype'], mstype.tensor, self.name) | |||
| x_shape = list(x['shape']) | |||
| validator.check_integer("rank of x", len(x_shape), 1, Rel.GT, self.name) | |||
| validator.check_integer("last dim of x", x_shape[-1], 1, Rel.EQ, self.name) | |||
| out_shape = x_shape | |||
| out_shape[-1] = self.pad_dim_size | |||
| out = {'shape': out_shape, | |||
| 'dtype': x['dtype'], | |||
| 'value': None} | |||
| return out | |||
| class Split(PrimitiveWithInfer): | |||
| """ | |||
| Splits input tensor into output_num of tensors along the given axis and output numbers. | |||
| @@ -34,8 +34,7 @@ class StandardNormal(PrimitiveWithInfer): | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| Outputs: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev. | |||
| The dtype is float32. | |||
| Tensor. The shape that the input 'shape' denotes. The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| @@ -126,8 +125,8 @@ class Gamma(PrimitiveWithInfer): | |||
| \text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}}, | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| seed (int): Random seed. Default: 0. | |||
| seed2 (int): Random seed2. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| @@ -149,10 +148,11 @@ class Gamma(PrimitiveWithInfer): | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| def __init__(self, seed=0, seed2=0): | |||
| """Init Gamma""" | |||
| self.init_prim_io_names(inputs=['shape', 'alpha', 'beta'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| validator.check_value_type('seed2', seed2, [int], self.name) | |||
| def __infer__(self, shape, alpha, beta): | |||
| shape_v = shape["value"] | |||
| @@ -180,8 +180,8 @@ class Poisson(PrimitiveWithInfer): | |||
| \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}, | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| seed (int): Random seed. Default: 0. | |||
| seed2 (int): Random seed2. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| @@ -200,10 +200,11 @@ class Poisson(PrimitiveWithInfer): | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| def __init__(self, seed=0, seed2=0): | |||
| """Init Poisson""" | |||
| self.init_prim_io_names(inputs=['shape', 'mean'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| validator.check_value_type('seed2', seed2, [int], self.name) | |||
| def __infer__(self, shape, mean): | |||
| shape_v = shape["value"] | |||
| @@ -223,7 +224,7 @@ class Poisson(PrimitiveWithInfer): | |||
| class UniformInt(PrimitiveWithInfer): | |||
| r""" | |||
| Produces random integer values i, uniformly distributed on the closed interval [a, b], that is, | |||
| Produces random integer values i, uniformly distributed on the closed interval [a, b), that is, | |||
| distributed according to the discrete probability function: | |||
| .. math:: | |||
| @@ -233,19 +234,18 @@ class UniformInt(PrimitiveWithInfer): | |||
| The number in tensor a should be strictly less than b at any position after broadcasting. | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| seed (int): Random seed. Default: 0. | |||
| seed2 (int): Random seed2. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **a** (Tensor) - The a distribution parameter. | |||
| It defines the minimum possibly generated value. With int32 data type. | |||
| It defines the minimum possibly generated value. With int32 data type. Only one number is supported. | |||
| - **b** (Tensor) - The b distribution parameter. | |||
| It defines the maximum possibly generated value. With int32 data type. | |||
| It defines the maximum possibly generated value. With int32 data type. Only one number is supported. | |||
| Outputs: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b. | |||
| The dtype is int32. | |||
| Tensor. The shape that the input 'shape' denotes. The dtype is int32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| @@ -256,10 +256,11 @@ class UniformInt(PrimitiveWithInfer): | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| def __init__(self, seed=0, seed2=0): | |||
| """Init UniformInt""" | |||
| self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| validator.check_value_type('seed2', seed2, [int], self.name) | |||
| def __infer__(self, shape, a, b): | |||
| shape_v = shape["value"] | |||
| @@ -270,10 +271,12 @@ class UniformInt(PrimitiveWithInfer): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.int32], self.name) | |||
| validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.int32], self.name) | |||
| broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name) | |||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||
| a_shape = a['shape'] | |||
| b_shape = b['shape'] | |||
| validator.check("dim of a", len(a_shape), '0(scalar)', 0, Rel.EQ, self.name) | |||
| validator.check("dim of b", len(b_shape), '0(scalar)', 0, Rel.EQ, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'shape': shape_v, | |||
| 'dtype': mstype.int32, | |||
| 'value': None} | |||
| return out | |||
| @@ -281,54 +284,40 @@ class UniformInt(PrimitiveWithInfer): | |||
| class UniformReal(PrimitiveWithInfer): | |||
| r""" | |||
| Produces random floating-point values i, uniformly distributed on the interval [min(a, b), max(a, b)), that is,\ | |||
| distributed according to the probability density function: | |||
| .. math:: | |||
| \text{P}(i|a,b) = \frac{1}{b-a}, | |||
| Produces random floating-point values i, uniformly distributed on the interval [0, 1). | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| seed (int): Random seed. Default: 0. | |||
| seed2 (int): Random seed2. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **a** (Tensor) - The a distribution parameter. | |||
| It defines the minimum possibly generated value. With float32 data type. | |||
| - **b** (Tensor) - The b distribution parameter. | |||
| It defines the maximum possibly generated value. With float32 data type. | |||
| Outputs: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b. | |||
| The dtype is float32. | |||
| Tensor. The shape that the input 'shape' denotes. The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> a = Tensor(1.0, mstype.float32) | |||
| >>> b = Tensor(5.0, mstype.float32) | |||
| >>> uniform_real = P.UniformReal(seed=10) | |||
| >>> output = uniform_real(shape, a, b) | |||
| >>> uniformreal = P.UniformReal(seed=2) | |||
| >>> output = uniformreal(shape) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| def __init__(self, seed=0, seed2=0): | |||
| """Init UniformReal""" | |||
| self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output']) | |||
| self.init_prim_io_names(inputs=['shape'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| validator.check_value_type('seed2', seed2, [int], self.name) | |||
| def __infer__(self, shape, a, b): | |||
| def __infer__(self, shape): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.float32], self.name) | |||
| broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name) | |||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'shape': shape_v, | |||
| 'dtype': mstype.float32, | |||
| 'value': None} | |||
| return out | |||
| @@ -0,0 +1,53 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.parameter import Parameter | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| beta1_power = 0.9 | |||
| beta2_power = 0.999 | |||
| lr = 0.001 | |||
| beta1 = 0.9 | |||
| beta2 = 0.999 | |||
| epsilon = 1e-8 | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.fused_sparse_adam = P.FusedSparseAdam() | |||
| self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | |||
| self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | |||
| self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | |||
| def construct(self, grad, indices): | |||
| return self.fused_sparse_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, | |||
| grad, indices) | |||
| def test_net(): | |||
| gradient = Tensor(np.array([0.22948648, 0.14569908, 0.92861906, 0.66870148]) | |||
| .reshape([2, 1, 2]).astype(np.float32)) | |||
| indices = Tensor([0, 1], mstype.int32) | |||
| net = Net() | |||
| output = net(gradient, indices) | |||
| print(output) | |||
| print(net.var.default_input) | |||
| print(net.m.default_input) | |||
| print(net.v.default_input) | |||
| @@ -0,0 +1,50 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.parameter import Parameter | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| lr = 0.01 | |||
| l1 = 0.0 | |||
| l2 = 0.0 | |||
| lr_power = -0.5 | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.fused_sparse_ftrl = P.FusedSparseFtrl(lr=0.1, l1=0.0, l2=0.0, lr_power=-0.5) | |||
| self.var = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="accum") | |||
| self.linear = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="linear") | |||
| def construct(self, grad, indices): | |||
| return self.fused_sparse_ftrl(self.var, self.accum, self.linear, grad, indices) | |||
| def test_net(): | |||
| gradient = Tensor(np.array([-3, 2, 3, 0, 0, 0, -4, -1, -2]) | |||
| .reshape([3, 3]).astype(np.float32)) | |||
| indices = Tensor(np.ones([3]), mstype.int32) | |||
| net = Net() | |||
| output = net(gradient, indices) | |||
| print(output) | |||
| print(net.var.default_input) | |||
| print(net.accum.default_input) | |||
| print(net.linear.default_input) | |||
| @@ -0,0 +1,53 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.parameter import Parameter | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| beta1_power = 0.9 | |||
| beta2_power = 0.999 | |||
| lr = 0.001 | |||
| beta1 = 0.9 | |||
| beta2 = 0.999 | |||
| epsilon = 1e-8 | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.fused_sparse_lazy_adam = P.FusedSparseLazyAdam() | |||
| self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | |||
| self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | |||
| self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | |||
| def construct(self, grad, indices): | |||
| return self.fused_sparse_lazy_adam(self.var, self.m, self.v, beta1_power, beta2_power, | |||
| lr, beta1, beta2, epsilon, grad, indices) | |||
| def test_net(): | |||
| gradient = Tensor(np.array([0.22948648, 0.14569908, 0.92861906, 0.66870148]) | |||
| .reshape([2, 1, 2]).astype(np.float32)) | |||
| indices = Tensor([0, 1], mstype.int32) | |||
| net = Net() | |||
| output = net(gradient, indices) | |||
| print(output) | |||
| print(net.var.default_input) | |||
| print(net.m.default_input) | |||
| print(net.v.default_input) | |||
| @@ -0,0 +1,47 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.parameter import Parameter | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.fused_sparse_proximal_adagrad = P.FusedSparseProximalAdagrad() | |||
| self.var = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="accum") | |||
| self.lr = 0.01 | |||
| self.l1 = 0.0 | |||
| self.l2 = 0.0 | |||
| def construct(self, grad, indices): | |||
| return self.fused_sparse_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, | |||
| grad, indices) | |||
| def test_net(): | |||
| gradient = Tensor(np.array([-3, 2, 3, 0, 0, 0, -4, -1, -2]) | |||
| .reshape([3, 3]).astype(np.float32)) | |||
| indices = Tensor(np.ones([3]), mstype.int32) | |||
| net = Net() | |||
| output = net(gradient, indices) | |||
| print(output) | |||
| print(net.var.default_input) | |||
| print(net.accum.default_input) | |||
| @@ -24,9 +24,9 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| def __init__(self, shape, seed=0, seed2=0): | |||
| super(Net, self).__init__() | |||
| self.gamma = P.Gamma(seed=seed) | |||
| self.gamma = P.Gamma(seed=seed, seed2=seed2) | |||
| self.shape = shape | |||
| def construct(self, alpha, beta): | |||
| @@ -38,10 +38,9 @@ def test_net_1D(): | |||
| shape = (3, 2, 4) | |||
| alpha = 1.0 | |||
| beta = 1.0 | |||
| net = Net(shape, seed) | |||
| net = Net(shape=shape, seed=seed) | |||
| talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32) | |||
| output = net(talpha, tbeta) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 4) | |||
| @@ -50,8 +49,7 @@ def test_net_ND(): | |||
| shape = (3, 1, 2) | |||
| alpha = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| beta = np.array([1.0]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| net = Net(shape=shape, seed=seed) | |||
| talpha, tbeta = Tensor(alpha), Tensor(beta) | |||
| output = net(talpha, tbeta) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -24,7 +24,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape): | |||
| def __init__(self, shape, seed=0, seed2=0): | |||
| super(Net, self).__init__() | |||
| self.poisson = P.Poisson() | |||
| self.shape = shape | |||
| @@ -36,17 +36,16 @@ class Net(nn.Cell): | |||
| def test_net_1(): | |||
| shape = (2, 16) | |||
| mean = np.array([5.0]).astype(np.float32) | |||
| net = Net(shape) | |||
| net = Net(shape=shape) | |||
| tmean = Tensor(mean) | |||
| output = net(tmean) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (2, 16) | |||
| def test_net_2(): | |||
| shape = (4, 1) | |||
| mean = np.array([5.0, 10.0]).astype(np.float32) | |||
| net = Net(shape) | |||
| net = Net(shape=shape) | |||
| tmean = Tensor(mean) | |||
| output = net(tmean) | |||
| print(output.asnumpy()) | |||
| @@ -12,7 +12,6 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| @@ -24,7 +23,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| def __init__(self, shape, seed=0, seed2=0): | |||
| super(Net, self).__init__() | |||
| self.uniformint = P.UniformInt(seed=seed) | |||
| self.shape = shape | |||
| @@ -38,10 +37,9 @@ def test_net_1D(): | |||
| shape = (3, 2, 4) | |||
| a = 1 | |||
| b = 5 | |||
| net = Net(shape, seed) | |||
| net = Net(shape, seed=seed) | |||
| ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32) | |||
| output = net(ta, tb) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 4) | |||
| @@ -12,36 +12,29 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| def __init__(self, shape, seed=0, seed2=0): | |||
| super(Net, self).__init__() | |||
| self.uniformreal = P.UniformReal(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, a, b): | |||
| return self.uniformreal(self.shape, a, b) | |||
| def construct(self): | |||
| return self.uniformreal(self.shape) | |||
| def test_net_1D(): | |||
| def test_net(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| a = 1.0 | |||
| b = 5.0 | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32) | |||
| output = net(ta, tb) | |||
| print(output.asnumpy()) | |||
| net = Net(shape, seed=seed) | |||
| output = net() | |||
| assert output.shape == (3, 2, 4) | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.ops import composite as C | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, alpha, beta): | |||
| C.set_seed(20) | |||
| return C.gamma(self.shape, alpha, beta, self.seed) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| alpha = 1.0 | |||
| beta = 1.0 | |||
| net = Net(shape, seed) | |||
| talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32) | |||
| output = net(talpha, tbeta) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 1, 2) | |||
| alpha = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| beta = np.array([1.0]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32) | |||
| output = net(talpha, tbeta) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -12,9 +12,7 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| @@ -32,6 +30,7 @@ class Net(nn.Cell): | |||
| self.seed = seed | |||
| def construct(self, mean, stddev): | |||
| C.set_seed(20) | |||
| return C.normal(self.shape, mean, stddev, self.seed) | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.ops import composite as C | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, mean): | |||
| C.set_seed(20) | |||
| return C.poisson(self.shape, mean, self.seed) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| mean = 1.0 | |||
| net = Net(shape, seed) | |||
| tmean = Tensor(mean, mstype.float32) | |||
| output = net(tmean) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 1, 2) | |||
| mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| tmean = Tensor(mean, mstype.float32) | |||
| output = net(tmean) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.ops import composite as C | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, a, b): | |||
| C.set_seed(20) | |||
| return C.uniform(self.shape, a, b, self.seed) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| a = 1.0 | |||
| b = 6.0 | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32) | |||
| output = net(ta, tb) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 1, 2) | |||
| a = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| b = np.array([1.0]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32) | |||
| output = net(ta, tb) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -43,4 +43,4 @@ def test_net(): | |||
| tx, ty = Tensor(x), Tensor(y) | |||
| output = mask(tx, ty) | |||
| print(output.asnumpy()) | |||
| assert ([255, 255, 255, 255] == output.asnumpy()).all() | |||
| assert ([255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255] == output.asnumpy()).all() | |||
| @@ -0,0 +1,40 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, pad_dim_size): | |||
| super(Net, self).__init__() | |||
| self.padding = P.Padding(pad_dim_size) | |||
| def construct(self, x): | |||
| return self.padding(x) | |||
| def test_padding(): | |||
| x = Tensor(np.array([[8], [10]]), mstype.int32) | |||
| padding = Net(4) | |||
| out = padding(x) | |||
| assert(out.asnumpy() == [[8, 0, 0, 0], [10, 0, 0, 0]]).all() | |||
| @@ -592,44 +592,33 @@ class LaplaceNet(nn.Cell): | |||
| class GammaNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(GammaNet, self).__init__() | |||
| self.gamma = P.Gamma(seed=seed) | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, alpha, beta): | |||
| out = self.gamma(self.shape, alpha, beta) | |||
| out = C.gamma(self.shape, alpha, beta, self.seed) | |||
| return out | |||
| class PoissonNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(PoissonNet, self).__init__() | |||
| self.poisson = P.Poisson(seed=seed) | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, mean): | |||
| out = self.poisson(self.shape, mean) | |||
| return out | |||
| class UniformIntNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(UniformIntNet, self).__init__() | |||
| self.uniformint = P.UniformInt(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, a, b): | |||
| out = self.uniformint(self.shape, a, b) | |||
| out = C.poisson(self.shape, mean, self.seed) | |||
| return out | |||
| class UniformRealNet(nn.Cell): | |||
| class UniformNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(UniformRealNet, self).__init__() | |||
| self.uniformreal = P.UniformReal(seed=seed) | |||
| super(UniformNet, self).__init__() | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, a, b): | |||
| out = self.uniformreal(self.shape, a, b) | |||
| out = C.uniform(self.shape, a, b, self.seed) | |||
| return out | |||
| @@ -924,13 +913,9 @@ test_case_math_ops = [ | |||
| 'block': PoissonNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(2.0, mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('UniformInt', { | |||
| 'block': UniformIntNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(1, mstype.int32), Tensor(15, mstype.int32)], | |||
| 'skip': ['backward']}), | |||
| ('UniformReal', { | |||
| 'block': UniformRealNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(5.0, mstype.float32)], | |||
| ('Uniform', { | |||
| 'block': UniformNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('RandomChoiceWithMask', { | |||
| 'block': P.RandomChoiceWithMask(256), | |||