Merge pull request !7841 from zhouyuanshen/ACosGrad_and_AsinGradtags/v1.1.0
| @@ -15,6 +15,7 @@ | |||
| */ | |||
| #include "unary_op_grad_impl.cuh" | |||
| template <typename T> | |||
| __global__ void SqrtGradKernel(const T *input, const T *dout, T *output, const size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| @@ -36,7 +37,44 @@ __global__ void RsqrtGradKernel(const T *input, const T *dout, T *output, const | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void AsinGradKernel(const T *input, const T *dout, T *output, const size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| T one = 1; | |||
| T sqt = sqrtf(one - input[i] * input[i]); | |||
| output[i] = dout[i] / sqt; | |||
| } | |||
| return; | |||
| } | |||
| template <> | |||
| __global__ void AsinGradKernel(const half *input, const half *dout, half *output, const size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| half one = 1; | |||
| half sqt = hsqrt(one - input[i] * input[i]); | |||
| output[i] = dout[i] / sqt; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void ACosGradKernel(const T *input, const T *dout, T *output, const size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| T neg_one = -1; | |||
| T one = 1; | |||
| T sqt = sqrtf(one - input[i] * input[i]); | |||
| output[i] = neg_one * dout[i] / sqt; | |||
| } | |||
| return; | |||
| } | |||
| template <> | |||
| __global__ void ACosGradKernel(const half *input, const half *dout, half *output, const size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| half neg_one = -1; | |||
| half one = 1; | |||
| half sqt = hsqrt(one - input[i] * input[i]); | |||
| output[i] = neg_one * dout[i] / sqt; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void SqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) { | |||
| SqrtGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count); | |||
| @@ -48,11 +86,31 @@ void RsqrtGrad(const T *input, const T *dout, T *output, const size_t count, cud | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void AsinGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) { | |||
| AsinGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count); | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void ACosGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) { | |||
| ACosGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count); | |||
| return; | |||
| } | |||
| template void SqrtGrad<float>(const float *input, const float *dout, float *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void RsqrtGrad<float>(const float *input, const float *dout, float *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void AsinGrad<float>(const float *input, const float *dout, float *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void ACosGrad<float>(const float *input, const float *dout, float *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void SqrtGrad<half>(const half *input, const half *dout, half *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void RsqrtGrad<half>(const half *input, const half *dout, half *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void AsinGrad<half>(const half *input, const half *dout, half *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void ACosGrad<half>(const half *input, const half *dout, half *output, const size_t count, | |||
| cudaStream_t cuda_stream); | |||
| @@ -22,5 +22,9 @@ template <typename T> | |||
| void SqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void RsqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void AsinGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void ACosGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_ | |||
| @@ -34,5 +34,21 @@ MS_REG_GPU_KERNEL_ONE( | |||
| RsqrtGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| UnaryGradOpGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| AsinGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnaryGradOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| AsinGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| UnaryGradOpGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ACosGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnaryGradOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ACosGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| UnaryGradOpGpuKernel, half) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -27,9 +27,17 @@ | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| enum UnaryGradOptype { UNARY_OP_SQRT_GRAD = 0, UNARY_OP_RSQRT_GRAD, UNARY_OP_GRAD_INVALID_TYPE = 255 }; | |||
| enum UnaryGradOptype { | |||
| UNARY_OP_SQRT_GRAD = 0, | |||
| UNARY_OP_RSQRT_GRAD = 1, | |||
| UNARY_OP_ASIN_GRAD = 2, | |||
| UNARY_OP_ACOS_GRAD = 3, | |||
| UNARY_OP_GRAD_INVALID_TYPE = 255 | |||
| }; | |||
| static const std::map<std::string, UnaryGradOptype> kUnaryGradOpTypeMap = {{"SqrtGrad", UNARY_OP_SQRT_GRAD}, | |||
| {"RsqrtGrad", UNARY_OP_RSQRT_GRAD}}; | |||
| {"RsqrtGrad", UNARY_OP_RSQRT_GRAD}, | |||
| {"AsinGrad", UNARY_OP_ASIN_GRAD}, | |||
| {"ACosGrad", UNARY_OP_ACOS_GRAD}}; | |||
| template <typename T> | |||
| class UnaryGradOpGpuKernel : public GpuKernel { | |||
| public: | |||
| @@ -59,6 +67,16 @@ class UnaryGradOpGpuKernel : public GpuKernel { | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case UNARY_OP_ASIN_GRAD: { | |||
| AsinGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T), | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case UNARY_OP_ACOS_GRAD: { | |||
| ACosGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T), | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case UNARY_OP_RSQRT_GRAD: { | |||
| RsqrtGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T), | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| import mindspore.ops.operations._grad_ops as P | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_acosgrad_fp32(): | |||
| error = np.ones(4) * 1.0e-7 | |||
| x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32) | |||
| dout_np = np.array([1, 1, 1, 1]).astype(np.float32) | |||
| output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np)) | |||
| expect = np.array([-1, -1.0327955, -1.1547005, -1.0482849]) | |||
| diff = output_ms.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_acosgrad_fp16(): | |||
| error = np.ones(4) * 1.0e-3 | |||
| x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16) | |||
| dout_np = np.array([1, 1, 1, 1]).astype(np.float16) | |||
| output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np)) | |||
| expect = np.array([-1, -1.033, -1.154, -1.048]) | |||
| diff = output_ms.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| import mindspore.ops.operations._grad_ops as P | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_asingrad_fp32(): | |||
| error = np.ones(4) * 1.0e-7 | |||
| x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32) | |||
| dout_np = np.array([1, 1, 1, 1]).astype(np.float32) | |||
| output_ms = P.AsinGrad()(Tensor(x_np), Tensor(dout_np)) | |||
| expect = np.array([1, 1.0327955, 1.1547005, 1.0482849]) | |||
| diff = output_ms.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_asingrad_fp16(): | |||
| error = np.ones(4) * 1.0e-3 | |||
| x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16) | |||
| dout_np = np.array([1, 1, 1, 1]).astype(np.float16) | |||
| output_ms = P.AsinGrad()(Tensor(x_np), Tensor(dout_np)) | |||
| expect = np.array([1, 1.033, 1.154, 1.048]) | |||
| diff = output_ms.asnumpy() - expect | |||
| assert np.all(diff < error) | |||