Merge pull request !5782 from wangmin0104/mastertags/v1.0.0
| @@ -217,7 +217,7 @@ Inference result will be stored in the example path, whose folder name is "eval" | |||
| ``` | |||
| Inference result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log. | |||
| ``` | |||
| result: {'top_5_accuracy': 0.9286771766965429, 'top_1_accuracy': 0.7613036171574904} ckpt=train_parallel/resnet-36_5004.ckpt | |||
| result: {'top_5_accuracy': 0.9287972151088348, 'top_1_accuracy': 0.7597031049935979} ckpt=train_parallel/resnet-36_5004.ckpt | |||
| ``` | |||
| ## Model Description | |||
| @@ -12,149 +12,109 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """grad_reducer_thor""" | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.communication.management import GlobalComm, get_group_size | |||
| """grad reducer cell for distributed training""" | |||
| from mindspore.nn.cell import Cell | |||
| from mindspore.communication.management import GlobalComm, get_group_size | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp | |||
| from mindspore.ops.operations.comm_ops import AllReduce | |||
| import mindspore.common.dtype as mstype | |||
| reduce_opt = C.MultitypeFuncGraph("reduce_opt") | |||
| _all_reduce_A = AllReduce() | |||
| def _init_allreduce_operators(length, split_indices): | |||
| """ initialize allreduce communication operators""" | |||
| indices = split_indices[0] | |||
| fusion = split_indices[1] | |||
| op_list = () | |||
| j = 0 | |||
| for i in range(length): | |||
| if j <= len(indices)-1: | |||
| temp = indices[j] | |||
| else: | |||
| temp = length | |||
| if i >= temp: | |||
| j = j + 1 | |||
| fusion = fusion + 1 | |||
| op = AllReduce('sum', GlobalComm.WORLD_COMM_GROUP) | |||
| op.add_prim_attr('fusion', fusion) | |||
| op_list = op_list + (op,) | |||
| return op_list | |||
| @reduce_opt.register("Function", "Number", "Function", "Tensor") | |||
| def _tensors_allreduce_mean(mul, degree, allreduce, parameters): | |||
| """ | |||
| Apply allreduce on parameters. | |||
| def _init_optimizer_allreduce(group): | |||
| global _all_reduce_A | |||
| _all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP) | |||
| _all_reduce_A.add_prim_attr('fusion', group) | |||
| Args: | |||
| mul(Primitive): The mul operator for parameters. | |||
| degree (int): The mean coefficient. | |||
| allreduce (Primitive): The communication operator for parameters. | |||
| parameters (Tensor): The parameters before operation. | |||
| @reduce_opt.register("Function", "Number", "Tensor") | |||
| def _tensors_allreduce_mean(mul, degree, grad): | |||
| degree = F.scalar_cast(degree, F.dtype(grad)) | |||
| grad = _all_reduce_A(grad) | |||
| Returns: | |||
| Tensor, the parameters after operation. | |||
| """ | |||
| degree = F.scalar_cast(degree, F.dtype(parameters)) | |||
| parameters = allreduce(parameters) | |||
| cast_op = P.Cast() | |||
| return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad))) | |||
| @reduce_opt.register("Bool", "Tensor") | |||
| def _tensors_allreduce(allreduce_filter, grad): | |||
| if allreduce_filter: | |||
| return _all_reduce_A(grad) | |||
| return grad | |||
| return mul(parameters, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(parameters))) | |||
| _get_datatype = C.MultitypeFuncGraph("_get_datatype") | |||
| @_get_datatype.register("Tensor") | |||
| def _tensors_get_datatype(grad): | |||
| def _tensors_get_datatype(parameters): | |||
| """ | |||
| Acquire gradient datatype. | |||
| Acquire parameters datatype. | |||
| Args: | |||
| grad (Tensor): The gradient tensor before operation. | |||
| parameters (Tensor): The parameters before operation. | |||
| Returns: | |||
| mstype, the datatype of gradient. | |||
| mstype, the datatype of parameters. | |||
| """ | |||
| return F.dtype(grad) | |||
| return F.dtype(parameters) | |||
| _cast_datatype = C.MultitypeFuncGraph("_cast_datatype") | |||
| @_cast_datatype.register("TypeType", "Tensor") | |||
| def _tensors_cast_datatype(datatype, grad): | |||
| def _tensors_cast_datatype(datatype, parameters): | |||
| """ | |||
| Cast gradient to datatype. | |||
| Cast parameters to datatype. | |||
| Args: | |||
| datatype (mstype): the destination datatype of gradient. | |||
| grad (Tensor): The gradient tensor before operation. | |||
| datatype (mstype): the destination datatype of parameters. | |||
| parameters (Tensor): The parameters before operation. | |||
| Returns: | |||
| Tensor, the gradient tensor after operation. | |||
| Tensor, the parameters after operation. | |||
| """ | |||
| return F.cast(grad, datatype) | |||
| return F.cast(parameters, datatype) | |||
| class DistributedGradReducerThor(Cell): | |||
| """ | |||
| A distributed optimizer. | |||
| Constructs a gradient reducer Cell, which applies communication and average operations on | |||
| single-process gradient values. | |||
| Constructs a parameters reducer Cell, which applies communication and average operations on | |||
| single-process parameters values. | |||
| Args: | |||
| parameters (list): the parameters to be updated. | |||
| mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False. | |||
| parameter_length (int): length of the parameters to be updated. | |||
| split_indices(tuple): parameter split indices. | |||
| mean (bool): When mean is true, the mean coefficient (degree) would apply on parameters. Default: False. | |||
| degree (int): The mean coefficient. Usually it equals to device number. Default: None. | |||
| Raises: | |||
| ValueError: If degree is not a int or less than 0. | |||
| Examples: | |||
| >>> from mindspore.communication import init, get_group_size | |||
| >>> from mindspore.ops import composite as C | |||
| >>> from mindspore.ops import operations as P | |||
| >>> from mindspore.ops import functional as F | |||
| >>> from mindspore import context | |||
| >>> from mindspore import nn | |||
| >>> from mindspore import ParameterTuple | |||
| >>> from mindspore.context import ParallelMode | |||
| >>> | |||
| >>> device_id = int(os.environ["DEVICE_ID"]) | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, | |||
| >>> device_id=int(device_id), enable_hccl=True) | |||
| >>> init() | |||
| >>> context.reset_auto_parallel_context() | |||
| >>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL) | |||
| >>> | |||
| >>> | |||
| >>> class TrainingWrapper(nn.Cell): | |||
| >>> def __init__(self, network, optimizer, sens=1.0): | |||
| >>> super(TrainingWrapper, self).__init__(auto_prefix=False) | |||
| >>> self.network = network | |||
| >>> self.network.add_flags(defer_inline=True) | |||
| >>> self.weights = ParameterTuple(network.trainable_params()) | |||
| >>> self.optimizer = optimizer | |||
| >>> self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||
| >>> self.sens = sens | |||
| >>> self.reducer_flag = False | |||
| >>> self.grad_reducer = None | |||
| >>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | |||
| >>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL, | |||
| >>> ParallelMode.HYBRID_PARALLEL]: | |||
| >>> self.reducer_flag = True | |||
| >>> if self.reducer_flag: | |||
| >>> mean = context.get_auto_parallel_context("gradients_mean") | |||
| >>> if mean.get_device_num_is_set(): | |||
| >>> degree = context.get_auto_parallel_context("device_num") | |||
| >>> else: | |||
| >>> degree = get_group_size() | |||
| >>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) | |||
| >>> | |||
| >>> def construct(self, *args): | |||
| >>> weights = self.weights | |||
| >>> loss = self.network(*args) | |||
| >>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) | |||
| >>> grads = self.grad(self.network, weights)(*args, sens) | |||
| >>> if self.reducer_flag: | |||
| >>> # apply grad reducer on grads | |||
| >>> grads = self.grad_reducer(grads) | |||
| >>> return F.depend(loss, self.optimizer(grads)) | |||
| >>> | |||
| >>> network = Net() | |||
| >>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| >>> train_cell = TrainingWrapper(network, optimizer) | |||
| >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) | |||
| >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) | |||
| >>> grads = train_cell(inputs, label) | |||
| """ | |||
| def __init__(self, parameters, group, mean=True, degree=None): | |||
| def __init__(self, parameter_length, split_indices, mean=True, degree=None): | |||
| super(DistributedGradReducerThor, self).__init__(auto_prefix=False) | |||
| self.hyper_map = C.HyperMap() | |||
| self.mul = P.Mul() | |||
| @@ -165,16 +125,11 @@ class DistributedGradReducerThor(Cell): | |||
| raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int") | |||
| self.degree = degree | |||
| self.mean = mean | |||
| self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters) | |||
| _init_optimizer_allreduce(group) | |||
| def construct(self, grads): | |||
| # In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the | |||
| # result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce, | |||
| # and cast back after the operation. | |||
| datatypes = self.hyper_map(F.partial(_get_datatype), grads) | |||
| grads = self.hyper_map(F.partial(_cast_datatype, mstype.float32), grads) | |||
| new_grad = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), grads) | |||
| new_grad = self.hyper_map(F.partial(_cast_datatype), datatypes, new_grad) | |||
| return new_grad | |||
| self.op_list = _init_allreduce_operators(parameter_length, split_indices) | |||
| def construct(self, parameters): | |||
| datatypes = self.hyper_map(F.partial(_get_datatype), parameters) | |||
| parameters = self.hyper_map(F.partial(_cast_datatype, mstype.float32), parameters) | |||
| new_parameters = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), self.op_list, parameters) | |||
| new_parameters = self.hyper_map(F.partial(_cast_datatype), datatypes, new_parameters) | |||
| return new_parameters | |||
| @@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype | |||
| from mindspore._checkparam import check_bool | |||
| from mindspore._checkparam import Validator as validator | |||
| from mindspore.nn.optim.optimizer import Optimizer | |||
| from mindspore.parallel._utils import _get_device_num, _get_gradients_mean | |||
| from mindspore.parallel._utils import _get_device_num, _get_mirror_mean | |||
| from src.grad_reducer_thor import DistributedGradReducerThor | |||
| _momentum_opt = C.MultitypeFuncGraph("momentum_opt") | |||
| @@ -85,10 +85,12 @@ class THOR_GPU(Optimizer): | |||
| self.assign = P.Assign() | |||
| self.mul = P.Mul() | |||
| mean = _get_gradients_mean() | |||
| mean = _get_mirror_mean() | |||
| degree = _get_device_num() | |||
| self.grad_reducer_thorA = DistributedGradReducerThor(self.parameters, 0, mean, degree) | |||
| self.grad_reducer_thorG = DistributedGradReducerThor(self.parameters, 0, mean, degree) | |||
| parameter_length = len(self.feature_map) | |||
| self.grad_reducer_thorA = DistributedGradReducerThor(parameter_length, ((parameter_length,), 0), mean, degree) | |||
| self.grad_reducer_thorG = DistributedGradReducerThor(parameter_length, ((parameter_length,), 0), mean, degree) | |||
| self.weight_decay = weight_decay | |||
| self.decay_flags = tuple(decay_filter(x) for x in self.parameters) | |||
| self.update_gradient = P.UpdateThorGradient(split_dim=128) | |||
| @@ -191,12 +193,13 @@ class THOR(Optimizer): | |||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||
| 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, | |||
| 1.0] | |||
| mean = _get_gradients_mean() | |||
| mean = _get_mirror_mean() | |||
| degree = _get_device_num() | |||
| self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree) | |||
| self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree) | |||
| self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree) | |||
| self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree) | |||
| parameter_length = len(self.feature_map) | |||
| self.grad_reducer_Amax = DistributedGradReducerThor(parameter_length, ((27,), 2), mean, degree) | |||
| self.grad_reducer_Gmax = DistributedGradReducerThor(parameter_length, ((27,), 4), mean, degree) | |||
| self.grad_reducer_A = DistributedGradReducerThor(parameter_length, ((27,), 6), mean, degree) | |||
| self.grad_reducer_G = DistributedGradReducerThor(parameter_length, ((27,), 8), mean, degree) | |||
| self.matrix_A_inv = () | |||
| self.matrix_G_inv = () | |||
| self.matrix_max_inv = () | |||
| @@ -95,11 +95,7 @@ if __name__ == '__main__': | |||
| context.set_context(device_id=device_id, enable_auto_mixed_precision=True) | |||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| gradients_mean=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107]) | |||
| init() | |||
| # GPU target | |||
| else: | |||
| @@ -12,150 +12,109 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """grad_reducer_thor""" | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.communication.management import GlobalComm, get_group_size | |||
| """grad reducer cell for distributed training""" | |||
| from mindspore.nn.cell import Cell | |||
| from mindspore.communication.management import GlobalComm, get_group_size | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp | |||
| from mindspore.ops.operations.comm_ops import AllReduce | |||
| import mindspore.common.dtype as mstype | |||
| reduce_opt = C.MultitypeFuncGraph("reduce_opt") | |||
| _all_reduce_A = AllReduce() | |||
| def _init_allreduce_operators(length, split_indices): | |||
| """ initialize allreduce communication operators""" | |||
| indices = split_indices[0] | |||
| fusion = split_indices[1] | |||
| op_list = () | |||
| j = 0 | |||
| for i in range(length): | |||
| if j <= len(indices)-1: | |||
| temp = indices[j] | |||
| else: | |||
| temp = length | |||
| if i >= temp: | |||
| j = j + 1 | |||
| fusion = fusion + 1 | |||
| op = AllReduce('sum', GlobalComm.WORLD_COMM_GROUP) | |||
| op.add_prim_attr('fusion', fusion) | |||
| op_list = op_list + (op,) | |||
| return op_list | |||
| @reduce_opt.register("Function", "Number", "Function", "Tensor") | |||
| def _tensors_allreduce_mean(mul, degree, allreduce, parameters): | |||
| """ | |||
| Apply allreduce on parameters. | |||
| def _init_optimizer_allreduce(group): | |||
| global _all_reduce_A | |||
| _all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP) | |||
| _all_reduce_A.add_prim_attr('fusion', group) | |||
| Args: | |||
| mul(Primitive): The mul operator for parameters. | |||
| degree (int): The mean coefficient. | |||
| allreduce (Primitive): The communication operator for parameters. | |||
| parameters (Tensor): The parameters before operation. | |||
| @reduce_opt.register("Function", "Number", "Tensor") | |||
| def _tensors_allreduce_mean(mul, degree, grad): | |||
| degree = F.scalar_cast(degree, F.dtype(grad)) | |||
| grad = _all_reduce_A(grad) | |||
| Returns: | |||
| Tensor, the parameters after operation. | |||
| """ | |||
| degree = F.scalar_cast(degree, F.dtype(parameters)) | |||
| parameters = allreduce(parameters) | |||
| cast_op = P.Cast() | |||
| return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad))) | |||
| @reduce_opt.register("Bool", "Tensor") | |||
| def _tensors_allreduce(allreduce_filter, grad): | |||
| if allreduce_filter: | |||
| return _all_reduce_A(grad) | |||
| return grad | |||
| return mul(parameters, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(parameters))) | |||
| _get_datatype = C.MultitypeFuncGraph("_get_datatype") | |||
| @_get_datatype.register("Tensor") | |||
| def _tensors_get_datatype(grad): | |||
| def _tensors_get_datatype(parameters): | |||
| """ | |||
| Acquire gradient datatype. | |||
| Acquire parameters datatype. | |||
| Args: | |||
| grad (Tensor): The gradient tensor before operation. | |||
| parameters (Tensor): The parameters before operation. | |||
| Returns: | |||
| mstype, the datatype of gradient. | |||
| mstype, the datatype of parameters. | |||
| """ | |||
| return F.dtype(grad) | |||
| return F.dtype(parameters) | |||
| _cast_datatype = C.MultitypeFuncGraph("_cast_datatype") | |||
| @_cast_datatype.register("TypeType", "Tensor") | |||
| def _tensors_cast_datatype(datatype, grad): | |||
| def _tensors_cast_datatype(datatype, parameters): | |||
| """ | |||
| Cast gradient to datatype. | |||
| Cast parameters to datatype. | |||
| Args: | |||
| datatype (mstype): the destination datatype of gradient. | |||
| grad (Tensor): The gradient tensor before operation. | |||
| datatype (mstype): the destination datatype of parameters. | |||
| parameters (Tensor): The parameters before operation. | |||
| Returns: | |||
| Tensor, the gradient tensor after operation. | |||
| Tensor, the parameters after operation. | |||
| """ | |||
| return F.cast(grad, datatype) | |||
| return F.cast(parameters, datatype) | |||
| class DistributedGradReducerThor(Cell): | |||
| """ | |||
| A distributed optimizer. | |||
| Constructs a gradient reducer Cell, which applies communication and average operations on | |||
| single-process gradient values. | |||
| Constructs a parameters reducer Cell, which applies communication and average operations on | |||
| single-process parameters values. | |||
| Args: | |||
| parameters (list): the parameters to be updated. | |||
| group (int): the different group to allreduce. | |||
| mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False. | |||
| parameter_length (int): length of the parameters to be updated. | |||
| split_indices(tuple): parameter split indices. | |||
| mean (bool): When mean is true, the mean coefficient (degree) would apply on parameters. Default: False. | |||
| degree (int): The mean coefficient. Usually it equals to device number. Default: None. | |||
| Raises: | |||
| ValueError: If degree is not a int or less than 0. | |||
| Examples: | |||
| >>> from mindspore.communication import init, get_group_size | |||
| >>> from mindspore.ops import composite as C | |||
| >>> from mindspore.ops import operations as P | |||
| >>> from mindspore.ops import functional as F | |||
| >>> from mindspore import context | |||
| >>> from mindspore import nn | |||
| >>> from mindspore import ParameterTuple | |||
| >>> from mindspore.context import ParallelMode | |||
| >>> | |||
| >>> device_id = int(os.environ["DEVICE_ID"]) | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, | |||
| >>> device_id=int(device_id), enable_hccl=True) | |||
| >>> init() | |||
| >>> context.reset_auto_parallel_context() | |||
| >>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL) | |||
| >>> | |||
| >>> | |||
| >>> class TrainingWrapper(nn.Cell): | |||
| >>> def __init__(self, network, optimizer, sens=1.0): | |||
| >>> super(TrainingWrapper, self).__init__(auto_prefix=False) | |||
| >>> self.network = network | |||
| >>> self.network.add_flags(defer_inline=True) | |||
| >>> self.weights = ParameterTuple(network.trainable_params()) | |||
| >>> self.optimizer = optimizer | |||
| >>> self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||
| >>> self.sens = sens | |||
| >>> self.reducer_flag = False | |||
| >>> self.grad_reducer = None | |||
| >>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | |||
| >>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL, | |||
| >>> ParallelMode.HYBRID_PARALLEL]: | |||
| >>> self.reducer_flag = True | |||
| >>> if self.reducer_flag: | |||
| >>> mean = context.get_auto_parallel_context("gradients_mean") | |||
| >>> if mean.get_device_num_is_set(): | |||
| >>> degree = context.get_auto_parallel_context("device_num") | |||
| >>> else: | |||
| >>> degree = get_group_size() | |||
| >>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) | |||
| >>> | |||
| >>> def construct(self, *args): | |||
| >>> weights = self.weights | |||
| >>> loss = self.network(*args) | |||
| >>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) | |||
| >>> grads = self.grad(self.network, weights)(*args, sens) | |||
| >>> if self.reducer_flag: | |||
| >>> # apply grad reducer on grads | |||
| >>> grads = self.grad_reducer(grads) | |||
| >>> return F.depend(loss, self.optimizer(grads)) | |||
| >>> | |||
| >>> network = Net() | |||
| >>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| >>> train_cell = TrainingWrapper(network, optimizer) | |||
| >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) | |||
| >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) | |||
| >>> grads = train_cell(inputs, label) | |||
| """ | |||
| def __init__(self, parameters, group, mean=True, degree=None): | |||
| def __init__(self, parameter_length, split_indices, mean=True, degree=None): | |||
| super(DistributedGradReducerThor, self).__init__(auto_prefix=False) | |||
| self.hyper_map = C.HyperMap() | |||
| self.mul = P.Mul() | |||
| @@ -166,20 +125,11 @@ class DistributedGradReducerThor(Cell): | |||
| raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int") | |||
| self.degree = degree | |||
| self.mean = mean | |||
| self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters) | |||
| _init_optimizer_allreduce(group) | |||
| def construct(self, grads): | |||
| # In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the | |||
| # result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce, | |||
| # and cast back after the operation. | |||
| datatypes = self.hyper_map(F.partial(_get_datatype), grads) | |||
| grads = self.hyper_map(F.partial(_cast_datatype, mstype.float32), grads) | |||
| if self.mean: | |||
| new_grad = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), grads) | |||
| else: | |||
| new_grad = self.hyper_map(F.partial(reduce_opt), self.allreduce_filter, grads) | |||
| new_grad = self.hyper_map(F.partial(_cast_datatype), datatypes, new_grad) | |||
| return new_grad | |||
| self.op_list = _init_allreduce_operators(parameter_length, split_indices) | |||
| def construct(self, parameters): | |||
| datatypes = self.hyper_map(F.partial(_get_datatype), parameters) | |||
| parameters = self.hyper_map(F.partial(_cast_datatype, mstype.float32), parameters) | |||
| new_parameters = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), self.op_list, parameters) | |||
| new_parameters = self.hyper_map(F.partial(_cast_datatype), datatypes, new_parameters) | |||
| return new_parameters | |||
| @@ -89,10 +89,11 @@ class THOR(Optimizer): | |||
| 1.0] | |||
| mean = _get_gradients_mean() | |||
| degree = _get_device_num() | |||
| self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree) | |||
| self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree) | |||
| self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree) | |||
| self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree) | |||
| parameter_length = len(self.feature_map) | |||
| self.grad_reducer_Amax = DistributedGradReducerThor(parameter_length, ((27,), 2), mean, degree) | |||
| self.grad_reducer_Gmax = DistributedGradReducerThor(parameter_length, ((27,), 4), mean, degree) | |||
| self.grad_reducer_A = DistributedGradReducerThor(parameter_length, ((27,), 6), mean, degree) | |||
| self.grad_reducer_G = DistributedGradReducerThor(parameter_length, ((27,), 8), mean, degree) | |||
| self.matrix_A_inv = () | |||
| self.matrix_G_inv = () | |||
| self.matrix_max_inv = () | |||
| @@ -241,11 +241,7 @@ def train_process_thor(q, device_id, epoch_size, device_num, enable_hccl): | |||
| if enable_hccl: | |||
| context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| gradients_mean=True, parameter_broadcast=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107]) | |||
| init() | |||
| # network | |||