| @@ -71,7 +71,6 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, grad | |||
| next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) | |||
| - beta2, op_square(gradient_fp32)) | |||
| update = next_m / (eps + op_sqrt(next_v)) | |||
| if decay_flag: | |||
| update = op_mul(weight_decay_tensor, param_fp32) + update | |||
| @@ -110,26 +109,45 @@ def _check_learning_rate_value(learning_rate, end_learning_rate, decay_steps, po | |||
| @_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tuple", | |||
| "Tensor", "Tensor", "Tensor") | |||
| "Tensor", "Tensor", "Tensor", "Bool") | |||
| def _run_opt_with_sparse(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params, | |||
| moment1, moment2): | |||
| moment1, moment2, ps_parameter): | |||
| """Apply sparse adam optimizer to the weight parameter when the gradient is sparse.""" | |||
| success = True | |||
| success = F.depend(success, sparse_opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2, | |||
| eps, gradient[1], gradient[0])) | |||
| if ps_parameter: | |||
| op_shape = P.Shape() | |||
| _ps_pull = P.Pull() | |||
| _ps_push = P.Push("Adam", [0, 1, 2]) | |||
| shapes = (op_shape(params), op_shape(moment1), op_shape(moment2), | |||
| op_shape(beta1_power), op_shape(beta2_power), op_shape(lr), op_shape(beta1), | |||
| op_shape(beta2), op_shape(eps), op_shape(gradient[1]), op_shape(gradient[0])) | |||
| success = F.depend(success, _ps_pull(_ps_push((beta1_power, beta2_power, lr, beta1, beta2, | |||
| eps, gradient[1], gradient[0]), shapes), params)) | |||
| else: | |||
| success = F.depend(success, sparse_opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2, | |||
| eps, gradient[1], gradient[0])) | |||
| return success | |||
| @_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", | |||
| "Tensor", "Tensor", "Tensor") | |||
| "Tensor", "Tensor", "Tensor", "Bool") | |||
| def _run_opt_with_one_number(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params, | |||
| moment1, moment2): | |||
| moment1, moment2, ps_parameter): | |||
| """Apply adam optimizer to the weight parameter using Tensor.""" | |||
| success = True | |||
| success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2, | |||
| eps, gradient)) | |||
| if ps_parameter: | |||
| op_shape = P.Shape() | |||
| _ps_pull = P.Pull() | |||
| _ps_push = P.Push("Adam", [0, 1, 2]) | |||
| success = F.depend(success, _ps_pull(_ps_push((beta1_power, beta2_power, lr, beta1, beta2, eps, gradient), | |||
| (op_shape(params), op_shape(moment1), op_shape(moment2))), | |||
| params)) | |||
| else: | |||
| success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2, | |||
| eps, gradient)) | |||
| return success | |||
| @_adam_push_pull_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", | |||
| "Tensor", "Tuple", "Tensor", "Tensor", "Tensor") | |||
| def _run_push_pull_opt_with_sparse(push, pull, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params, | |||
| @@ -156,6 +174,7 @@ def _run_push_pull_opt_with_one_number(push, pull, beta1_power, beta2_power, bet | |||
| (op_shape(params), op_shape(moment1), op_shape(moment2))), params)) | |||
| return success | |||
| class Adam(Optimizer): | |||
| r""" | |||
| Updates gradients by Adaptive Moment Estimation (Adam) algorithm. | |||
| @@ -293,13 +312,14 @@ class Adam(Optimizer): | |||
| if self.is_group_lr: | |||
| success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, beta1_power, beta2_power, | |||
| self.beta1, self.beta2, self.eps), | |||
| lr, gradients, params, moment1, moment2) | |||
| lr, gradients, params, moment1, moment2, self.ps_parameters) | |||
| else: | |||
| success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, beta1_power, beta2_power, | |||
| self.beta1, self.beta2, self.eps, lr), | |||
| gradients, params, moment1, moment2) | |||
| gradients, params, moment1, moment2, self.ps_parameters) | |||
| return success | |||
| class PSAdam(Optimizer): | |||
| '''The same usage as Adam optimizer except the parameters are set PS mode.''' | |||
| def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, | |||
| @@ -346,6 +366,7 @@ class PSAdam(Optimizer): | |||
| gradients, params, moment1, moment2) | |||
| return success | |||
| class AdamWeightDecay(Optimizer): | |||
| """ | |||
| Implements Adam algorithm weight decay fix. | |||
| @@ -26,22 +26,38 @@ _ftrl_push_pull_opt = C.MultitypeFuncGraph("ftrl_opt") | |||
| @_ftrl_opt.register("Function", "Function", "Tensor", "Number", "Number", "Number", "Tensor", "Tuple", "Tensor", | |||
| "Tensor") | |||
| def _tensor_run_opt_with_sparse(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment): | |||
| "Tensor", "Bool") | |||
| def _tensor_run_opt_with_sparse(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment, | |||
| ps_parameter): | |||
| """Apply sparse ftrl optimizer to the weight parameter when the gradient is sparse.""" | |||
| success = True | |||
| success = F.depend(success, spars_opt(weight, moment, linear, gradient[1], gradient[0])) | |||
| if ps_parameter: | |||
| op_shape = P.Shape() | |||
| _ps_pull = P.Pull() | |||
| _ps_push = P.Push("Ftrl", [0, 1, 2]) | |||
| shapes = (op_shape(weight), op_shape(moment), op_shape(linear), op_shape(gradient[1]), op_shape(gradient[0])) | |||
| success = F.depend(success, _ps_pull(_ps_push((gradient[1], gradient[0]), shapes), weight)) | |||
| else: | |||
| success = F.depend(success, spars_opt(weight, moment, linear, gradient[1], gradient[0])) | |||
| return success | |||
| @_ftrl_opt.register("Function", "Function", "Tensor", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor", | |||
| "Tensor") | |||
| def _tensor_run_opt(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment): | |||
| "Tensor", "Bool") | |||
| def _tensor_run_opt(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment, ps_parameter): | |||
| """Apply ftrl optimizer to the weight parameter.""" | |||
| success = True | |||
| success = F.depend(success, opt(weight, moment, linear, gradient, learning_rate, l1, l2, lr_power)) | |||
| if ps_parameter: | |||
| op_shape = P.Shape() | |||
| _ps_pull = P.Pull() | |||
| _ps_push = P.Push("Ftrl", [0, 1, 2]) | |||
| success = F.depend(success, _ps_pull(_ps_push((gradient, learning_rate, l1, l2, lr_power), | |||
| (op_shape(weight), op_shape(moment), op_shape(linear))), weight)) | |||
| else: | |||
| success = F.depend(success, opt(weight, moment, linear, gradient, learning_rate, l1, l2, lr_power)) | |||
| return success | |||
| @_ftrl_push_pull_opt.register("Function", "Function", "Tensor", "Number", "Number", "Number", "Tensor", "Tuple", | |||
| "Tensor", "Tensor") | |||
| def _tensor_run_push_pull_opt_with_sparse(push, pull, learning_rate, l1, l2, lr_power, linear, gradient, | |||
| @@ -63,6 +79,7 @@ def _tensor_run_push_pull_opt_with_one_number(push, pull, learning_rate, l1, l2, | |||
| (op_shape(weight), op_shape(moment), op_shape(linear))), weight)) | |||
| return success | |||
| def _check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay=0.0, prim_name=None): | |||
| """Check param.""" | |||
| validator.check_value_type("initial_accum", initial_accum, [float], prim_name) | |||
| @@ -150,9 +167,10 @@ class FTRL(Optimizer): | |||
| grads = self.scale_grad(grads) | |||
| success = self.map_(F.partial(_ftrl_opt, self.opt, self.sparse_opt, lr, self.l1, self.l2, self.lr_power), | |||
| linear, grads, params, moments) | |||
| linear, grads, params, moments, self.ps_parameters) | |||
| return success | |||
| class PSFTRL(Optimizer): | |||
| def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0, | |||
| use_locking=False, loss_scale=1.0, weight_decay=0.0): | |||
| @@ -13,7 +13,7 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """momentum""" | |||
| from mindspore.ops import functional as F, composite as C | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.ops import _selected_ops | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.common.tensor import Tensor | |||
| @@ -25,11 +25,18 @@ from .optimizer import Optimizer | |||
| _momentum_opt = C.MultitypeFuncGraph("momentum_opt") | |||
| @_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor") | |||
| def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment): | |||
| @_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool") | |||
| def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment, ps_parameter): | |||
| """Apply momentum optimizer to the weight parameter using Tensor.""" | |||
| success = True | |||
| success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum)) | |||
| if ps_parameter: | |||
| op_shape = P.Shape() | |||
| _ps_pull = P.Pull() | |||
| _ps_push = P.Push("Momentum", []) | |||
| shapes = (op_shape(learning_rate), op_shape(gradient), op_shape(momentum)) | |||
| success = F.depend(success, _ps_pull(_ps_push((learning_rate, gradient, momentum), shapes), weight)) | |||
| else: | |||
| success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum)) | |||
| return success | |||
| @@ -127,7 +134,9 @@ class Momentum(Optimizer): | |||
| gradients = self.scale_grad(gradients) | |||
| lr = self.get_lr() | |||
| if self.is_group_lr: | |||
| success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum), lr, gradients, params, moments) | |||
| success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum), lr, gradients, params, moments, | |||
| self.ps_parameters) | |||
| else: | |||
| success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum, lr), gradients, params, moments) | |||
| success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum, lr), gradients, params, moments, | |||
| self.ps_parameters) | |||
| return success | |||
| @@ -153,6 +153,8 @@ class Optimizer(Cell): | |||
| self.weight_decay = weight_decay * loss_scale | |||
| decay_filter = lambda x: 'beta' not in x.name and 'gamma' not in x.name | |||
| self.decay_flags = tuple(decay_filter(x) for x in self.parameters) | |||
| ps_filter = lambda x: x.is_param_ps | |||
| self.ps_parameters = tuple(ps_filter(x) for x in self.parameters) | |||
| self.reciprocal_scale = 1.0 / loss_scale | |||
| self.exec_weight_decay = any(self.decay_flags) | |||
| self.param_length = len(self.parameters) | |||
| @@ -511,6 +511,7 @@ class Push(PrimitiveWithInfer): | |||
| @prim_attr_register | |||
| def __init__(self, optim_type='ApplyMomentum', only_shape_indices=None): | |||
| """init Push""" | |||
| self.add_prim_attr("primitive_target", "CPU") | |||
| self.init_prim_io_names(inputs=['optim_inputs', 'optim_input_shapes'], outputs=['key']) | |||
| def infer_shape(self, inputs, shapes): | |||
| @@ -534,6 +535,7 @@ class Pull(PrimitiveWithInfer): | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init Pull""" | |||
| self.add_prim_attr("primitive_target", "CPU") | |||
| self.init_prim_io_names(inputs=['key', 'weight'], outputs=['output']) | |||
| def infer_shape(self, key_shape, weight_shape): | |||