From: @xuguoyang5566 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghuipull/15221/MERGE
| @@ -95,3 +95,19 @@ template void ReluGradV2(const size_t num, const int64_t *dy, const uint32_t *ma | |||||
| cudaStream_t cuda_stream); | cudaStream_t cuda_stream); | ||||
| template void ReluGradV2(const size_t num, const uint8_t *dy, const uint32_t *mask, uint8_t *dx, | template void ReluGradV2(const size_t num, const uint8_t *dy, const uint32_t *mask, uint8_t *dx, | ||||
| cudaStream_t cuda_stream); | cudaStream_t cuda_stream); | ||||
| template <typename T> | |||||
| __global__ void CalPReLUKernel(int size, T *input_addr, T *weight_addr, T *output_addr) { | |||||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||||
| output_addr[pos] = input_addr[pos] > static_cast<T>(0) ? input_addr[pos] : *weight_addr * input_addr[pos]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| void CalPReLU(int size, T *input_addr, T *weight_addr, T *output_addr, cudaStream_t cuda_stream) { | |||||
| CalPReLUKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input_addr, weight_addr, output_addr); | |||||
| return; | |||||
| } | |||||
| template void CalPReLU(int size, float *input_addr, float *weight_addr, float *output_addr, cudaStream_t cuda_stream); | |||||
| template void CalPReLU(int size, half *input_addr, half *weight_addr, half *output_addr, cudaStream_t cuda_stream); | |||||
| @@ -25,4 +25,7 @@ template <typename T> | |||||
| void ReluV2(const size_t num, const T *x, T *y, uint32_t *mask, cudaStream_t cuda_stream); | void ReluV2(const size_t num, const T *x, T *y, uint32_t *mask, cudaStream_t cuda_stream); | ||||
| template <typename T> | template <typename T> | ||||
| void ReluGradV2(const size_t num, const T *dy, const uint32_t *mask, T *dx, cudaStream_t cuda_stream); | void ReluGradV2(const size_t num, const T *dy, const uint32_t *mask, T *dx, cudaStream_t cuda_stream); | ||||
| template <typename T> | |||||
| void CalPReLU(int input_size, T *input_addr, T *weight_addr, T *output_addr, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_H_ | #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_H_ | ||||
| @@ -0,0 +1,31 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/prelu_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| PReLU, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||||
| PReLUGpuKernel, half) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| PReLU, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| PReLUGpuKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,111 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GPU_KERNEL_H_ | |||||
| #include <vector> | |||||
| #include <map> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/relu_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class PReLUGpuKernel : public GpuKernel { | |||||
| public: | |||||
| PReLUGpuKernel() { ResetResource(); } | |||||
| ~PReLUGpuKernel() override {} | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| if (is_null_input_) { | |||||
| return true; | |||||
| } | |||||
| T *input = GetDeviceAddress<T>(inputs, 0); | |||||
| T *weight = GetDeviceAddress<T>(inputs, 1); | |||||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||||
| const int size = input_size_ / sizeof(T); | |||||
| CalPReLU(size, input, weight, output, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(ERROR) << "Argument number is " << input_num << ", but ReLUGpuFwdKernel needs 2."; | |||||
| return false; | |||||
| } | |||||
| auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0); | |||||
| is_null_input_ = CHECK_NULL_INPUT(input_shape); | |||||
| if (is_null_input_) { | |||||
| MS_LOG(WARNING) << "PReLUGpuFwdKernel input is null."; | |||||
| } | |||||
| size_t size = 1; | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| size *= input_shape[i]; | |||||
| } | |||||
| input_size_ = size * sizeof(T); | |||||
| auto weight_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1); | |||||
| is_null_input_ = CHECK_NULL_INPUT(weight_shape); | |||||
| if (is_null_input_) { | |||||
| MS_LOG(WARNING) << "PReLUGpuFwdKernel weight is null."; | |||||
| } | |||||
| size = 1; | |||||
| for (size_t i = 0; i < weight_shape.size(); i++) { | |||||
| size *= weight_shape[i]; | |||||
| } | |||||
| weight_size_ = size * sizeof(T); | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| void ResetResource() noexcept override { | |||||
| is_null_input_ = false; | |||||
| input_size_list_.clear(); | |||||
| output_size_list_.clear(); | |||||
| workspace_size_list_.clear(); | |||||
| input_size_ = 0; | |||||
| workspace_size_ = 0; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_); | |||||
| output_size_list_.push_back(input_size_); | |||||
| workspace_size_list_.push_back(workspace_size_); | |||||
| } | |||||
| private: | |||||
| bool is_null_input_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| size_t input_size_; | |||||
| size_t weight_size_; | |||||
| size_t workspace_size_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GPU_KERNEL_H_ | |||||
| @@ -548,7 +548,7 @@ class PReLU(Cell): | |||||
| ValueError: If length of shape of `input_data` is equal to 1. | ValueError: If length of shape of `input_data` is equal to 1. | ||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` | |||||
| ``Ascend`` ``GPU`` | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32) | >>> input_x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32) | ||||
| @@ -1138,7 +1138,7 @@ class BatchNorm(PrimitiveWithInfer): | |||||
| TypeError: If dtype of `input_x`, `scale` or `mean` is neither float16 nor float32. | TypeError: If dtype of `input_x`, `scale` or `mean` is neither float16 nor float32. | ||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` ``CPU`` | |||||
| ``Ascend`` ``CPU`` ``GPU`` | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones([2, 2]), mindspore.float32) | >>> input_x = Tensor(np.ones([2, 2]), mindspore.float32) | ||||
| @@ -3526,7 +3526,7 @@ class PReLU(PrimitiveWithInfer): | |||||
| ValueError: If length of shape of `weight` is not equal to 1. | ValueError: If length of shape of `weight` is not equal to 1. | ||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` | |||||
| ``Ascend`` ``GPU`` | |||||
| Examples: | Examples: | ||||
| >>> import mindspore | >>> import mindspore | ||||
| @@ -0,0 +1,74 @@ | |||||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| class NetPReLU(nn.Cell): | |||||
| def __init__(self): | |||||
| super(NetPReLU, self).__init__() | |||||
| self.prelu = P.PReLU() | |||||
| def construct(self, x, weight): | |||||
| return self.prelu(x, weight) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_prelu_float16(): | |||||
| weight = Tensor(np.array([0.25]).astype(np.float16)) | |||||
| x = Tensor(np.array([[[[-1, 1, 10], | |||||
| [1, -1, 1], | |||||
| [10, 1, -1]]]]).astype(np.float16)) | |||||
| expect = np.array([[[[-0.25, 1, 10,], | |||||
| [1, -0.25, 1,], | |||||
| [10, 1, -0.25]]]]).astype(np.float16) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| prelu = NetPReLU() | |||||
| output = prelu(x, weight) | |||||
| assert (output.asnumpy() == expect).all() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| prelu = NetPReLU() | |||||
| output = prelu(x, weight) | |||||
| assert (output.asnumpy() == expect).all() | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_prelu_float32(): | |||||
| weight = Tensor(np.array([0.25]).astype(np.float32)) | |||||
| x = Tensor(np.array([[[[-1, 1, 10], | |||||
| [1, -1, 1], | |||||
| [10, 1, -1]]]]).astype(np.float32)) | |||||
| expect = np.array([[[[-0.25, 1, 10,], | |||||
| [1, -0.25, 1,], | |||||
| [10, 1, -0.25]]]]).astype(np.float32) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| prelu = NetPReLU() | |||||
| output = prelu(x, weight) | |||||
| assert (output.asnumpy() == expect).all() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| prelu = NetPReLU() | |||||
| output = prelu(x, weight) | |||||
| assert (output.asnumpy() == expect).all() | |||||