Merge pull request !1149 from panyifeng/fix_pylinttags/v0.3.0-alpha
| @@ -44,7 +44,7 @@ def test_calls(x): | |||||
| # pylint: disable=unused-argument | # pylint: disable=unused-argument | ||||
| def test_unused_param(x, y): | def test_unused_param(x, y): | ||||
| return x * x | return x * x | ||||
| def test_cannot_replace_return(x): | def test_cannot_replace_return(x): | ||||
| return x * x | return x * x | ||||
| @@ -13,8 +13,6 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.ops import Primitive | |||||
| import mindspore as ms | |||||
| add = P.TensorAdd() | add = P.TensorAdd() | ||||
| reshape = P.Reshape() | reshape = P.Reshape() | ||||
| @@ -26,6 +24,6 @@ def test_shape_add(x1, x2, y1, y2, z1, z2): | |||||
| reshape_sum1 = reshape(sum1, (2, 2, 3, 1)) | reshape_sum1 = reshape(sum1, (2, 2, 3, 1)) | ||||
| reshape_sum2 = reshape(sum2, (2, 2, 3, 1)) | reshape_sum2 = reshape(sum2, (2, 2, 3, 1)) | ||||
| reshape_sum3 = reshape(sum3, (2, 2, 3, 1)) | reshape_sum3 = reshape(sum3, (2, 2, 3, 1)) | ||||
| sum = add(reshape_sum1, reshape_sum2) | |||||
| sum = add(sum, reshape_sum3) | |||||
| return sum | |||||
| result = add(reshape_sum1, reshape_sum2) | |||||
| result = add(result, reshape_sum3) | |||||
| return result | |||||
| @@ -1,9 +1,8 @@ | |||||
| """ | """ | ||||
| @File : __init__.py | @File : __init__.py | ||||
| @Author: | @Author: | ||||
| @Date : 2019-01-23 16:36 | |||||
| @Desc : | |||||
| @Date : 2019-01-23 16:36 | |||||
| @Desc : | |||||
| """ | """ | ||||
| from .ad_test import * | from .ad_test import * | ||||
| @@ -12,10 +12,10 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| from dataclasses import dataclass | |||||
| import numpy as np | import numpy as np | ||||
| import mindspore as ms | import mindspore as ms | ||||
| from dataclasses import dataclass | |||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.ops import Primitive | from mindspore.ops import Primitive | ||||
| from mindspore.model_zoo.resnet import resnet50 | from mindspore.model_zoo.resnet import resnet50 | ||||
| @@ -106,7 +106,7 @@ def test_closure(a): | |||||
| def x1(b): | def x1(b): | ||||
| def x4(c): | def x4(c): | ||||
| return b | |||||
| return c * b | |||||
| return x4 | return x4 | ||||
| x2 = x1(a) | x2 = x1(a) | ||||
| x3 = x2(1.0) | x3 = x2(1.0) | ||||
| @@ -117,21 +117,18 @@ def test_if(a, b): | |||||
| # if statement, so I prefer to name the test 'test_if' | # if statement, so I prefer to name the test 'test_if' | ||||
| if a > b: | if a > b: | ||||
| return a | return a | ||||
| else: | |||||
| return b | |||||
| return b | |||||
| def test_if2(a, b): | def test_if2(a, b): | ||||
| if a > b: | if a > b: | ||||
| return a * a | return a * a | ||||
| else: | |||||
| return b + b | |||||
| return b + b | |||||
| def test_fact(x): | def test_fact(x): | ||||
| def fact(n): | def fact(n): | ||||
| if n <= 1: | if n <= 1: | ||||
| return 1 | return 1 | ||||
| else: | |||||
| return n * fact(n - 1) | |||||
| return n * fact(n - 1) | |||||
| return fact(x) | return fact(x) | ||||
| def test_while(x): | def test_while(x): | ||||
| @@ -13,11 +13,11 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ opt_test """ | """ opt_test """ | ||||
| import numpy as np | |||||
| from mindspore.ops import Primitive, PrimitiveWithInfer | from mindspore.ops import Primitive, PrimitiveWithInfer | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.ops.operations import _grad_ops as G | from mindspore.ops.operations import _grad_ops as G | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| import numpy as np | |||||
| # pylint: disable=unused-variable | # pylint: disable=unused-variable | ||||
| @@ -790,9 +790,9 @@ def test_convert_switch_ops(tag): | |||||
| return z | return z | ||||
| @fns | @fns | ||||
| def after(cond, x, y): | def after(cond, x, y): | ||||
| sw1 =ge_switch(x, cond) | |||||
| sw2 =ge_switch(y, cond) | |||||
| sw3 =ge_switch(y, cond) | |||||
| sw1 = ge_switch(x, cond) | |||||
| sw2 = ge_switch(y, cond) | |||||
| sw3 = ge_switch(y, cond) | |||||
| sw1_t = tuple_getitem(sw1, 1) | sw1_t = tuple_getitem(sw1, 1) | ||||
| sw2_t = tuple_getitem(sw2, 1) | sw2_t = tuple_getitem(sw2, 1) | ||||
| sw3_f = tuple_getitem(sw3, 0) | sw3_f = tuple_getitem(sw3, 0) | ||||
| @@ -13,4 +13,4 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| from .primitive_test import * | from .primitive_test import * | ||||
| from .infer_test import * | |||||
| from .infer_test import * | |||||
| @@ -12,8 +12,8 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import mindspore.nn as nn | |||||
| from dataclasses import dataclass | from dataclasses import dataclass | ||||
| import mindspore.nn as nn | |||||
| from mindspore.ops import Primitive | from mindspore.ops import Primitive | ||||
| from mindspore.ops import functional as F | from mindspore.ops import functional as F | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| @@ -14,7 +14,7 @@ | |||||
| # ============================================================================ | # ============================================================================ | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore.common import dtype | from mindspore.common import dtype | ||||
| from mindspore.ops import Primitive, prim_attr_register, PrimitiveWithInfer | |||||
| from mindspore.ops import prim_attr_register, PrimitiveWithInfer | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| def get_add(a, b): | def get_add(a, b): | ||||
| @@ -55,15 +55,15 @@ def get_tensor_to_scalar(logits, labels): | |||||
| conv2d = P.Conv2D(64, | conv2d = P.Conv2D(64, | ||||
| (3, 3), | |||||
| pad_mode="pad", | |||||
| pad=1, | |||||
| stride=2) | |||||
| (3, 3), | |||||
| pad_mode="pad", | |||||
| pad=1, | |||||
| stride=2) | |||||
| def get_conv2d(x, w): | def get_conv2d(x, w): | ||||
| return conv2d(x, w) | return conv2d(x, w) | ||||
| conv2dNative = P.DepthwiseConv2dNative(3, (3,3), pad_mode="pad", pad=1, stride=2) | |||||
| conv2dNative = P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2) | |||||
| def get_conv2d_native(x, w): | def get_conv2d_native(x, w): | ||||
| return conv2dNative(x, w) | return conv2dNative(x, w) | ||||
| @@ -74,8 +74,8 @@ def get_bias_add(x, b): | |||||
| def test_conv2d(out_channel, kernel_size, pad, stride, dilation): | def test_conv2d(out_channel, kernel_size, pad, stride, dilation): | ||||
| conv = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode= "pad", pad=pad, | |||||
| stride=stride, dilation= dilation) | |||||
| conv = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode="pad", pad=pad, | |||||
| stride=stride, dilation=dilation) | |||||
| def get_conv(x, w): | def get_conv(x, w): | ||||
| return conv(x, w) | return conv(x, w) | ||||
| return get_conv | return get_conv | ||||
| @@ -83,7 +83,7 @@ def test_conv2d(out_channel, kernel_size, pad, stride, dilation): | |||||
| def test_dropout(): | def test_dropout(): | ||||
| dropOutGenMask = P.DropoutGenMask() | dropOutGenMask = P.DropoutGenMask() | ||||
| dropoutDoMask = P.DropoutDoMask() | |||||
| dropoutDoMask = P.DropoutDoMask() | |||||
| shape = P.Shape() | shape = P.Shape() | ||||
| def get_dropout(x, prob): | def get_dropout(x, prob): | ||||
| mask = dropOutGenMask(shape(x), prob) | mask = dropOutGenMask(shape(x), prob) | ||||
| @@ -154,12 +154,12 @@ def test_lambda(x, y): | |||||
| return t | return t | ||||
| def test_funcdef(x, y): | def test_funcdef(x, y): | ||||
| def max(a, b): | |||||
| def mymax(a, b): | |||||
| if a > b: | if a > b: | ||||
| return a | return a | ||||
| else: | else: | ||||
| return b | return b | ||||
| t = max(x, y) | |||||
| t = mymax(x, y) | |||||
| return t | return t | ||||
| def test_tuple_fn(x, y): | def test_tuple_fn(x, y): | ||||
| @@ -225,7 +225,7 @@ def test_simple_closure(a, b): | |||||
| return b + 2.0 | return b + 2.0 | ||||
| return f() * g() | return f() * g() | ||||
| def test_assign_tuple(x,y): | |||||
| def test_assign_tuple(x, y): | |||||
| a = 1 | a = 1 | ||||
| b = 2 | b = 2 | ||||
| t = a, b | t = a, b | ||||
| @@ -282,8 +282,8 @@ def test_subscript_setitem(): | |||||
| return t | return t | ||||
| def test_dict(): | def test_dict(): | ||||
| dict = {"a": 1, "b": 2} | |||||
| return dict | |||||
| ret = {"a": 1, "b": 2} | |||||
| return ret | |||||
| def func_call(x, y, *var, a=0, b=1, **kwargs): | def func_call(x, y, *var, a=0, b=1, **kwargs): | ||||
| return x + y + var[0] + a + b + kwargs["z"] | return x + y + var[0] + a + b + kwargs["z"] | ||||
| @@ -25,13 +25,13 @@ tuple_getitem = Primitive('tuple_getitem') | |||||
| max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2) | max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2) | ||||
| def test_addn_cast(x, y, z): | def test_addn_cast(x, y, z): | ||||
| sum = addn((x, y)) | |||||
| res = cast(sum, ms.float16) | |||||
| mysum = addn((x, y)) | |||||
| res = cast(mysum, ms.float16) | |||||
| return res | return res | ||||
| def test_addn_with_max_pool(x, y): | def test_addn_with_max_pool(x, y): | ||||
| sum = addn((x, y)) | |||||
| output = max_pool(sum) | |||||
| mysum = addn((x, y)) | |||||
| output = max_pool(mysum) | |||||
| res = tuple_getitem(output, 0) | res = tuple_getitem(output, 0) | ||||
| return res | return res | ||||
| @@ -43,6 +43,6 @@ def test_shape_add(x1, x2, y1, y2, z1, z2): | |||||
| reshape_sum1 = reshape(sum1, (2, 2, 3, 1)) | reshape_sum1 = reshape(sum1, (2, 2, 3, 1)) | ||||
| reshape_sum2 = reshape(sum2, (2, 2, 3, 1)) | reshape_sum2 = reshape(sum2, (2, 2, 3, 1)) | ||||
| reshape_sum3 = reshape(sum3, (2, 2, 3, 1)) | reshape_sum3 = reshape(sum3, (2, 2, 3, 1)) | ||||
| sum = add(reshape_sum1, reshape_sum2) | |||||
| sum = add(sum, reshape_sum3) | |||||
| return sum | |||||
| mysum = add(reshape_sum1, reshape_sum2) | |||||
| mysum = add(mysum, reshape_sum3) | |||||
| return mysum | |||||
| @@ -12,9 +12,9 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| from mindspore.common.api import ms_function | |||||
| import numpy as np | import numpy as np | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore.common.api import ms_function | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| @@ -13,7 +13,6 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ test_dtype """ | """ test_dtype """ | ||||
| import pytest | |||||
| from mindspore._c_expression import typing | from mindspore._c_expression import typing | ||||
| from mindspore.common.api import ms_function | from mindspore.common.api import ms_function | ||||
| @@ -19,8 +19,6 @@ import mindspore.nn as nn | |||||
| from mindspore import context | from mindspore import context | ||||
| import mindspore.common.dtype as mstype | import mindspore.common.dtype as mstype | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.common.parameter import Parameter | |||||
| from mindspore.common.api import ms_function | |||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| @@ -200,6 +200,3 @@ def test_in_dict(): | |||||
| z = Tensor(np.random.randint(low=20, high=30, size=(2, 3, 4), dtype=np.int32)) | z = Tensor(np.random.randint(low=20, high=30, size=(2, 3, 4), dtype=np.int32)) | ||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| net(x, y, z) | net(x, y, z) | ||||
| @@ -38,5 +38,5 @@ def test_tensor_orign_ops(): | |||||
| assert np.all(z.asnumpy() - (x.asnumpy() + y.asnumpy()) < 0.0001) | assert np.all(z.asnumpy() - (x.asnumpy() + y.asnumpy()) < 0.0001) | ||||
| z = x * y | z = x * y | ||||
| assert np.all(z.asnumpy() - (x.asnumpy() * y.asnumpy()) < 0.0001) | assert np.all(z.asnumpy() - (x.asnumpy() * y.asnumpy()) < 0.0001) | ||||
| assert (x == y) | |||||
| assert (x != 'zero') | |||||
| assert x == y | |||||
| assert x != 'zero' | |||||
| @@ -297,4 +297,3 @@ def test_net_call(): | |||||
| input_x = Tensor( | input_x = Tensor( | ||||
| np.random.randint(0, 255, [1, 3, net.image_h, net.image_w]).astype(np.float32)) | np.random.randint(0, 255, [1, 3, net.image_h, net.image_w]).astype(np.float32)) | ||||
| output = net.construct(input_x) | output = net.construct(input_x) | ||||
| @@ -14,7 +14,6 @@ | |||||
| # ============================================================================ | # ============================================================================ | ||||
| """ test_dropout """ | """ test_dropout """ | ||||
| import numpy as np | import numpy as np | ||||
| import pytest | |||||
| from mindspore.common.api import _executor | from mindspore.common.api import _executor | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| @@ -57,6 +57,3 @@ def test_maxpool2d(): | |||||
| output = max_pool(input_data) | output = max_pool(input_data) | ||||
| output_np = output.asnumpy() | output_np = output.asnumpy() | ||||
| assert isinstance(output_np[0][0][0][0], (np.float32, np.float64)) | assert isinstance(output_np[0][0][0][0], (np.float32, np.float64)) | ||||
| @@ -20,7 +20,6 @@ from mindspore import Tensor | |||||
| from mindspore.ops import composite as C | from mindspore.ops import composite as C | ||||
| from mindspore.ops.composite import grad_all_with_sens | from mindspore.ops.composite import grad_all_with_sens | ||||
| from mindspore.common.dtype import get_py_obj_dtype | from mindspore.common.dtype import get_py_obj_dtype | ||||
| import mindspore.nn as nn | |||||
| import mindspore.ops.operations as P | import mindspore.ops.operations as P | ||||
| from mindspore.ops import functional as F | from mindspore.ops import functional as F | ||||
| from ...ut_filter import non_graph_engine | from ...ut_filter import non_graph_engine | ||||
| @@ -174,7 +173,7 @@ def test_select_grad(): | |||||
| assert np.all(gout[0].asnumpy() == expect_cond) | assert np.all(gout[0].asnumpy() == expect_cond) | ||||
| assert np.all(gout[1].asnumpy() == expect_x) | assert np.all(gout[1].asnumpy() == expect_x) | ||||
| assert np.all(gout[2].asnumpy() == expect_y) | assert np.all(gout[2].asnumpy() == expect_y) | ||||
| def test_SubGrad(): | def test_SubGrad(): | ||||
| """ test_SubGrad """ | """ test_SubGrad """ | ||||
| @@ -201,10 +200,10 @@ def test_MulGrad(): | |||||
| """ test_MulGrad """ | """ test_MulGrad """ | ||||
| input_x = Tensor(np.array([[2, 2], [2, 2]], np.float32)) | input_x = Tensor(np.array([[2, 2], [2, 2]], np.float32)) | ||||
| input_y = Tensor(np.array([[3, 3], [3, 3]], np.float32)) | input_y = Tensor(np.array([[3, 3], [3, 3]], np.float32)) | ||||
| mul = P.Mul() | |||||
| mymul = P.Mul() | |||||
| def fn(x, y): | def fn(x, y): | ||||
| output = mul(x, y) | |||||
| output = mymul(x, y) | |||||
| return output | return output | ||||
| out = fn(input_x, input_y) | out = fn(input_x, input_y) | ||||
| @@ -17,7 +17,6 @@ import numpy as np | |||||
| from mindspore.common.api import ms_function | from mindspore.common.api import ms_function | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore import context | |||||
| from mindspore.ops import Primitive | from mindspore.ops import Primitive | ||||
| from mindspore.ops import composite as C | from mindspore.ops import composite as C | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| @@ -19,8 +19,8 @@ from mindspore import context | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common.parameter import Parameter | from mindspore.common.parameter import Parameter | ||||
| from mindspore.common import Tensor | from mindspore.common import Tensor | ||||
| from ....mindspore_test_framework.utils.bprop_util import bprop | |||||
| from mindspore.common.api import ms_function | from mindspore.common.api import ms_function | ||||
| from ....mindspore_test_framework.utils.bprop_util import bprop | |||||
| def setup_module(module): | def setup_module(module): | ||||
| context.set_context(mode=context.PYNATIVE_MODE) | context.set_context(mode=context.PYNATIVE_MODE) | ||||
| @@ -88,7 +88,7 @@ class WithNoBprop(nn.Cell): | |||||
| def test_with_no_bprop(): | def test_with_no_bprop(): | ||||
| with_no_bprop = WithNoBprop() | with_no_bprop = WithNoBprop() | ||||
| C.grad_all(with_no_bprop)(1, 2) == (2, 1) | |||||
| assert C.grad_all(with_no_bprop)(1, 2) == (2, 1) | |||||
| def test_grad_in_bprop_1(): | def test_grad_in_bprop_1(): | ||||
| class GradInBprop_1(nn.Cell): | class GradInBprop_1(nn.Cell): | ||||
| @@ -189,8 +189,8 @@ class OneInputBprop(nn.Cell): | |||||
| def test_grad_one_input_bprop(): | def test_grad_one_input_bprop(): | ||||
| net = OneInputBprop() | net = OneInputBprop() | ||||
| input = Tensor(np.ones([2, 2]).astype(np.float32)) | |||||
| grad = C.grad_all(net)(input) | |||||
| input1 = Tensor(np.ones([2, 2]).astype(np.float32)) | |||||
| grad = C.grad_all(net)(input1) | |||||
| assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all() | assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all() | ||||
| @@ -68,9 +68,9 @@ def test_dump_target(): | |||||
| with pytest.raises(TypeError): | with pytest.raises(TypeError): | ||||
| context.set_context(save_dump_path=1) | context.set_context(save_dump_path=1) | ||||
| context.set_context(enable_dump=False) | context.set_context(enable_dump=False) | ||||
| assert context.get_context("enable_dump") == False | |||||
| assert not context.get_context("enable_dump") | |||||
| context.set_context(enable_dump=True) | context.set_context(enable_dump=True) | ||||
| assert context.get_context("enable_dump") == True | |||||
| assert context.get_context("enable_dump") | |||||
| assert context.get_context("save_dump_path") == "." | assert context.get_context("save_dump_path") == "." | ||||
| @@ -15,23 +15,17 @@ | |||||
| """ test_framstruct """ | """ test_framstruct """ | ||||
| import pytest | import pytest | ||||
| import numpy as np | import numpy as np | ||||
| import mindspore as ms | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore.ops import composite as C | from mindspore.ops import composite as C | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.common.parameter import Parameter, ParameterTuple | from mindspore.common.parameter import Parameter, ParameterTuple | ||||
| from mindspore.common.initializer import initializer | |||||
| from mindspore.common import dtype as mstype | from mindspore.common import dtype as mstype | ||||
| import mindspore.nn as nn | |||||
| from mindspore.nn.wrap.cell_wrapper import WithGradCell, WithLossCell | |||||
| from ..ut_filter import non_graph_engine | from ..ut_filter import non_graph_engine | ||||
| from ....mindspore_test_framework.utils.check_gradient import ( | from ....mindspore_test_framework.utils.check_gradient import ( | ||||
| ms_function, check_jacobian, Tensor, NNGradChecker, | ms_function, check_jacobian, Tensor, NNGradChecker, | ||||
| OperationGradChecker, check_gradient, ScalarGradChecker) | OperationGradChecker, check_gradient, ScalarGradChecker) | ||||
| from ....mindspore_test_framework.utils.bprop_util import bprop | |||||
| import mindspore.context as context | |||||
| from mindspore.ops._grad.grad_base import bprop_getters | from mindspore.ops._grad.grad_base import bprop_getters | ||||
| from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer | from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer | ||||
| @@ -299,22 +293,22 @@ def test_dont_unroll_while(): | |||||
| assert res == 3 | assert res == 3 | ||||
| class ConvNet(nn.Cell): | class ConvNet(nn.Cell): | ||||
| def __init__(self): | |||||
| super(ConvNet, self).__init__() | |||||
| out_channel = 16 | |||||
| kernel_size = 3 | |||||
| self.conv = P.Conv2D(out_channel, | |||||
| kernel_size, | |||||
| mode=1, | |||||
| pad_mode="pad", | |||||
| pad=0, | |||||
| stride=1, | |||||
| dilation=2, | |||||
| group=1) | |||||
| self.w = Parameter(Tensor(np.ones([16, 16, 3, 3]).astype(np.float32)), name='w') | |||||
| def construct(self, x): | |||||
| return self.conv(x, self.w) | |||||
| def __init__(self): | |||||
| super(ConvNet, self).__init__() | |||||
| out_channel = 16 | |||||
| kernel_size = 3 | |||||
| self.conv = P.Conv2D(out_channel, | |||||
| kernel_size, | |||||
| mode=1, | |||||
| pad_mode="pad", | |||||
| pad=0, | |||||
| stride=1, | |||||
| dilation=2, | |||||
| group=1) | |||||
| self.w = Parameter(Tensor(np.ones([16, 16, 3, 3]).astype(np.float32)), name='w') | |||||
| def construct(self, x): | |||||
| return self.conv(x, self.w) | |||||
| conv = ConvNet() | conv = ConvNet() | ||||
| c1 = Tensor([2], mstype.float32) | c1 = Tensor([2], mstype.float32) | ||||
| @@ -674,7 +668,7 @@ def grad_refactor_6(a, b): | |||||
| def test_grad_refactor_6(): | def test_grad_refactor_6(): | ||||
| C.grad_all(grad_refactor_6)(3, 2) == (3, 1) | |||||
| assert C.grad_all(grad_refactor_6)(3, 2) == (3, 1) | |||||
| def grad_refactor_while(x): | def grad_refactor_while(x): | ||||