Merge pull request !8146 from 34bunny/GPU-ScatterUpdateFixtags/v1.1.0
| @@ -32,5 +32,12 @@ MS_REG_GPU_KERNEL_ONE(ScatterUpdate, | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| ScatterUpdateKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(ScatterUpdate, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| ScatterUpdateKernel, int) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -40,8 +40,10 @@ class ScatterUpdateKernel : public GpuKernel { | |||
| int *indices = GetDeviceAddress<int>(inputs, 1); | |||
| T *updates = GetDeviceAddress<T>(inputs, 2); | |||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||
| CalScatterUpdate(input_size_, inner_size_, indices_size_, input, indices, updates, output, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(&output[0], &input[0], input_size_ * sizeof(T), cudaMemcpyDeviceToDevice, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "cudaMemcpyAsync output failed"); | |||
| CalScatterUpdate(inner_size_, indices_size_, indices, updates, output, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| @@ -17,29 +17,27 @@ | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/scatter_update_impl.cuh" | |||
| template <typename T> | |||
| __global__ void ScatterUpdate(const int input_size, const int inner_size, const int indices_size, const T *input, | |||
| const int *indices, const T *updates, T *output) { | |||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < input_size; pos += blockDim.x * gridDim.x) { | |||
| output[pos] = input[pos]; | |||
| __global__ void ScatterUpdate(const int inner_size, const int updates_size, const int *indices, const T *updates, | |||
| T *output) { | |||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < updates_size; pos += blockDim.x * gridDim.x) { | |||
| const int index = pos / inner_size; | |||
| const int offset = pos % inner_size; | |||
| for (int i = 0; i < indices_size; i++) { | |||
| const int update_pos = i * inner_size + offset; | |||
| output[pos] = (indices[i] == index ? updates[update_pos] : output[pos]); | |||
| } | |||
| const int current_pos = indices[index] * inner_size + offset; | |||
| output[current_pos] = updates[pos]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| void CalScatterUpdate(const int &input_size, const int &inner_size, const int &indices_size, const T *input, | |||
| const int *indices, const T *updates, T *output, cudaStream_t cuda_stream) { | |||
| ScatterUpdate<<<GET_BLOCKS(input_size), GET_THREADS, 0, cuda_stream>>>(input_size, inner_size, indices_size, input, | |||
| indices, updates, output); | |||
| void CalScatterUpdate(const int &inner_size, const int &indices_size, const int *indices, const T *updates, T *output, | |||
| cudaStream_t cuda_stream) { | |||
| const int updates_size = inner_size * indices_size; | |||
| ScatterUpdate<<<GET_BLOCKS(updates_size), GET_THREADS, 0, cuda_stream>>>(inner_size, updates_size, indices, updates, | |||
| output); | |||
| } | |||
| template void CalScatterUpdate<float>(const int &input_size, const int &inner_size, const int &indices_size, | |||
| const float *input, const int *indices, const float *updates, float *output, | |||
| cudaStream_t cuda_stream); | |||
| template void CalScatterUpdate<half>(const int &input_size, const int &inner_size, const int &indices_size, | |||
| const half *input, const int *indices, const half *updates, half *output, | |||
| cudaStream_t cuda_stream); | |||
| template void CalScatterUpdate<float>(const int &inner_size, const int &indices_size, const int *indices, | |||
| const float *updates, float *output, cudaStream_t cuda_stream); | |||
| template void CalScatterUpdate<half>(const int &inner_size, const int &indices_size, const int *indices, | |||
| const half *updates, half *output, cudaStream_t cuda_stream); | |||
| template void CalScatterUpdate<int>(const int &inner_size, const int &indices_size, const int *indices, | |||
| const int *updates, int *output, cudaStream_t cuda_stream); | |||
| @@ -20,7 +20,7 @@ | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| void CalScatterUpdate(const int &input_size, const int &inner_size, const int &indices_size, const T *input, | |||
| const int *indices, const T *updates, T *output, cudaStream_t cuda_stream); | |||
| void CalScatterUpdate(const int &inner_size, const int &indices_size, const int *indices, const T *updates, T *output, | |||
| cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_UPDATE_IMPL_CUH_ | |||
| @@ -75,7 +75,19 @@ def test_scatter_update_float16(): | |||
| updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float16)) | |||
| output = scatter_update_net(inputx, indices, updates) | |||
| expected = np.array([[0., 1., 2.], | |||
| [3., 4., 5.]]) | |||
| [3., 4., 5.]]).astype(np.float16) | |||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_scatter_update_int32(): | |||
| inputx = Tensor(np.zeros((2, 3)).astype(np.int32)) | |||
| indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||
| updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.int32)) | |||
| output = scatter_update_net(inputx, indices, updates) | |||
| expected = np.array([[0., 1., 2.], | |||
| [3., 4., 5.]]).astype(np.int32) | |||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||
| @pytest.mark.level0 | |||
| @@ -89,7 +101,7 @@ def test_scatter_update_large_float16(): | |||
| expected = np.array([[69., 70., 71.], | |||
| [66., 67., 68.], | |||
| [63., 64., 65.], | |||
| [72., 73., 74.]]) | |||
| [72., 73., 74.]]).astype(np.float16) | |||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||
| @pytest.mark.level0 | |||
| @@ -102,5 +114,52 @@ def test_scatter_update_disordered_float16(): | |||
| output = scatter_update_net(inputx, indices, updates) | |||
| expected = np.array([[45., 44., 43., 42.], | |||
| [63., 64., 65., 66.], | |||
| [67., 68., 69., 70.]]) | |||
| [67., 68., 69., 70.]]).astype(np.float16) | |||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_scatter_update_disordered_int32(): | |||
| inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32))) | |||
| indices = Tensor(np.array([1, 2]).astype(np.int32)) | |||
| updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.int32)) | |||
| output = scatter_update_net(inputx, indices, updates) | |||
| expected = np.array([[45., 44., 43., 42.], | |||
| [63., 64., 65., 66.], | |||
| [67., 68., 69., 70.]]).astype(np.int32) | |||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_scatter_update_large_shape_float16(): | |||
| inputx = Tensor(np.arange(96).reshape((4, 2, 3, 4)).astype(np.float16)) | |||
| indices = Tensor(np.array([1, 0]).astype(np.int32)) | |||
| updates = Tensor(np.flip(np.arange(48).reshape((2, 2, 3, 4)).astype(np.float16))) | |||
| output = scatter_update_net(inputx, indices, updates) | |||
| expected = np.array([[[[23., 22., 21., 20.], | |||
| [19., 18., 17., 16.], | |||
| [15., 14., 13., 12.]], | |||
| [[11., 10., 9., 8.], | |||
| [7., 6., 5., 4.], | |||
| [3., 2., 1., 0.]]], | |||
| [[[47., 46., 45., 44.], | |||
| [43., 42., 41., 40.], | |||
| [39., 38., 37., 36.]], | |||
| [[35., 34., 33., 32.], | |||
| [31., 30., 29., 28.], | |||
| [27., 26., 25., 24.]]], | |||
| [[[48., 49., 50., 51.], | |||
| [52., 53., 54., 55.], | |||
| [56., 57., 58., 59.]], | |||
| [[60., 61., 62., 63.], | |||
| [64., 65., 66., 67.], | |||
| [68., 69., 70., 71.]]], | |||
| [[[72., 73., 74., 75.], | |||
| [76., 77., 78., 79.], | |||
| [80., 81., 82., 83.]], | |||
| [[84., 85., 86., 87.], | |||
| [88., 89., 90., 91.], | |||
| [92., 93., 94., 95.]]]]).astype(np.float16) | |||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||