Merge pull request !8146 from 34bunny/GPU-ScatterUpdateFixtags/v1.1.0
| @@ -32,5 +32,12 @@ MS_REG_GPU_KERNEL_ONE(ScatterUpdate, | |||||
| .AddInputAttr(kNumberTypeFloat16) | .AddInputAttr(kNumberTypeFloat16) | ||||
| .AddOutputAttr(kNumberTypeFloat16), | .AddOutputAttr(kNumberTypeFloat16), | ||||
| ScatterUpdateKernel, half) | ScatterUpdateKernel, half) | ||||
| MS_REG_GPU_KERNEL_ONE(ScatterUpdate, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddOutputAttr(kNumberTypeInt32), | |||||
| ScatterUpdateKernel, int) | |||||
| } // namespace kernel | } // namespace kernel | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -40,8 +40,10 @@ class ScatterUpdateKernel : public GpuKernel { | |||||
| int *indices = GetDeviceAddress<int>(inputs, 1); | int *indices = GetDeviceAddress<int>(inputs, 1); | ||||
| T *updates = GetDeviceAddress<T>(inputs, 2); | T *updates = GetDeviceAddress<T>(inputs, 2); | ||||
| T *output = GetDeviceAddress<T>(outputs, 0); | T *output = GetDeviceAddress<T>(outputs, 0); | ||||
| CalScatterUpdate(input_size_, inner_size_, indices_size_, input, indices, updates, output, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(&output[0], &input[0], input_size_ * sizeof(T), cudaMemcpyDeviceToDevice, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)), | |||||
| "cudaMemcpyAsync output failed"); | |||||
| CalScatterUpdate(inner_size_, indices_size_, indices, updates, output, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | return true; | ||||
| } | } | ||||
| @@ -17,29 +17,27 @@ | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/scatter_update_impl.cuh" | #include "backend/kernel_compiler/gpu/cuda_impl/scatter_update_impl.cuh" | ||||
| template <typename T> | template <typename T> | ||||
| __global__ void ScatterUpdate(const int input_size, const int inner_size, const int indices_size, const T *input, | |||||
| const int *indices, const T *updates, T *output) { | |||||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < input_size; pos += blockDim.x * gridDim.x) { | |||||
| output[pos] = input[pos]; | |||||
| __global__ void ScatterUpdate(const int inner_size, const int updates_size, const int *indices, const T *updates, | |||||
| T *output) { | |||||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < updates_size; pos += blockDim.x * gridDim.x) { | |||||
| const int index = pos / inner_size; | const int index = pos / inner_size; | ||||
| const int offset = pos % inner_size; | const int offset = pos % inner_size; | ||||
| for (int i = 0; i < indices_size; i++) { | |||||
| const int update_pos = i * inner_size + offset; | |||||
| output[pos] = (indices[i] == index ? updates[update_pos] : output[pos]); | |||||
| } | |||||
| const int current_pos = indices[index] * inner_size + offset; | |||||
| output[current_pos] = updates[pos]; | |||||
| } | } | ||||
| } | } | ||||
| template <typename T> | template <typename T> | ||||
| void CalScatterUpdate(const int &input_size, const int &inner_size, const int &indices_size, const T *input, | |||||
| const int *indices, const T *updates, T *output, cudaStream_t cuda_stream) { | |||||
| ScatterUpdate<<<GET_BLOCKS(input_size), GET_THREADS, 0, cuda_stream>>>(input_size, inner_size, indices_size, input, | |||||
| indices, updates, output); | |||||
| void CalScatterUpdate(const int &inner_size, const int &indices_size, const int *indices, const T *updates, T *output, | |||||
| cudaStream_t cuda_stream) { | |||||
| const int updates_size = inner_size * indices_size; | |||||
| ScatterUpdate<<<GET_BLOCKS(updates_size), GET_THREADS, 0, cuda_stream>>>(inner_size, updates_size, indices, updates, | |||||
| output); | |||||
| } | } | ||||
| template void CalScatterUpdate<float>(const int &input_size, const int &inner_size, const int &indices_size, | |||||
| const float *input, const int *indices, const float *updates, float *output, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalScatterUpdate<half>(const int &input_size, const int &inner_size, const int &indices_size, | |||||
| const half *input, const int *indices, const half *updates, half *output, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalScatterUpdate<float>(const int &inner_size, const int &indices_size, const int *indices, | |||||
| const float *updates, float *output, cudaStream_t cuda_stream); | |||||
| template void CalScatterUpdate<half>(const int &inner_size, const int &indices_size, const int *indices, | |||||
| const half *updates, half *output, cudaStream_t cuda_stream); | |||||
| template void CalScatterUpdate<int>(const int &inner_size, const int &indices_size, const int *indices, | |||||
| const int *updates, int *output, cudaStream_t cuda_stream); | |||||
| @@ -20,7 +20,7 @@ | |||||
| #include "runtime/device/gpu/cuda_common.h" | #include "runtime/device/gpu/cuda_common.h" | ||||
| template <typename T> | template <typename T> | ||||
| void CalScatterUpdate(const int &input_size, const int &inner_size, const int &indices_size, const T *input, | |||||
| const int *indices, const T *updates, T *output, cudaStream_t cuda_stream); | |||||
| void CalScatterUpdate(const int &inner_size, const int &indices_size, const int *indices, const T *updates, T *output, | |||||
| cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_UPDATE_IMPL_CUH_ | #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_UPDATE_IMPL_CUH_ | ||||
| @@ -75,7 +75,19 @@ def test_scatter_update_float16(): | |||||
| updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float16)) | updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float16)) | ||||
| output = scatter_update_net(inputx, indices, updates) | output = scatter_update_net(inputx, indices, updates) | ||||
| expected = np.array([[0., 1., 2.], | expected = np.array([[0., 1., 2.], | ||||
| [3., 4., 5.]]) | |||||
| [3., 4., 5.]]).astype(np.float16) | |||||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_scatter_update_int32(): | |||||
| inputx = Tensor(np.zeros((2, 3)).astype(np.int32)) | |||||
| indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||||
| updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.int32)) | |||||
| output = scatter_update_net(inputx, indices, updates) | |||||
| expected = np.array([[0., 1., 2.], | |||||
| [3., 4., 5.]]).astype(np.int32) | |||||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | np.testing.assert_array_almost_equal(output.asnumpy(), expected) | ||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @@ -89,7 +101,7 @@ def test_scatter_update_large_float16(): | |||||
| expected = np.array([[69., 70., 71.], | expected = np.array([[69., 70., 71.], | ||||
| [66., 67., 68.], | [66., 67., 68.], | ||||
| [63., 64., 65.], | [63., 64., 65.], | ||||
| [72., 73., 74.]]) | |||||
| [72., 73., 74.]]).astype(np.float16) | |||||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | np.testing.assert_array_almost_equal(output.asnumpy(), expected) | ||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @@ -102,5 +114,52 @@ def test_scatter_update_disordered_float16(): | |||||
| output = scatter_update_net(inputx, indices, updates) | output = scatter_update_net(inputx, indices, updates) | ||||
| expected = np.array([[45., 44., 43., 42.], | expected = np.array([[45., 44., 43., 42.], | ||||
| [63., 64., 65., 66.], | [63., 64., 65., 66.], | ||||
| [67., 68., 69., 70.]]) | |||||
| [67., 68., 69., 70.]]).astype(np.float16) | |||||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_scatter_update_disordered_int32(): | |||||
| inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32))) | |||||
| indices = Tensor(np.array([1, 2]).astype(np.int32)) | |||||
| updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.int32)) | |||||
| output = scatter_update_net(inputx, indices, updates) | |||||
| expected = np.array([[45., 44., 43., 42.], | |||||
| [63., 64., 65., 66.], | |||||
| [67., 68., 69., 70.]]).astype(np.int32) | |||||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_scatter_update_large_shape_float16(): | |||||
| inputx = Tensor(np.arange(96).reshape((4, 2, 3, 4)).astype(np.float16)) | |||||
| indices = Tensor(np.array([1, 0]).astype(np.int32)) | |||||
| updates = Tensor(np.flip(np.arange(48).reshape((2, 2, 3, 4)).astype(np.float16))) | |||||
| output = scatter_update_net(inputx, indices, updates) | |||||
| expected = np.array([[[[23., 22., 21., 20.], | |||||
| [19., 18., 17., 16.], | |||||
| [15., 14., 13., 12.]], | |||||
| [[11., 10., 9., 8.], | |||||
| [7., 6., 5., 4.], | |||||
| [3., 2., 1., 0.]]], | |||||
| [[[47., 46., 45., 44.], | |||||
| [43., 42., 41., 40.], | |||||
| [39., 38., 37., 36.]], | |||||
| [[35., 34., 33., 32.], | |||||
| [31., 30., 29., 28.], | |||||
| [27., 26., 25., 24.]]], | |||||
| [[[48., 49., 50., 51.], | |||||
| [52., 53., 54., 55.], | |||||
| [56., 57., 58., 59.]], | |||||
| [[60., 61., 62., 63.], | |||||
| [64., 65., 66., 67.], | |||||
| [68., 69., 70., 71.]]], | |||||
| [[[72., 73., 74., 75.], | |||||
| [76., 77., 78., 79.], | |||||
| [80., 81., 82., 83.]], | |||||
| [[84., 85., 86., 87.], | |||||
| [88., 89., 90., 91.], | |||||
| [92., 93., 94., 95.]]]]).astype(np.float16) | |||||
| np.testing.assert_array_almost_equal(output.asnumpy(), expected) | np.testing.assert_array_almost_equal(output.asnumpy(), expected) | ||||