| @@ -0,0 +1,121 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.ops as P | |||
| from mindspore.common import ParameterTuple | |||
| import torch | |||
| import torch.nn as nn_pt | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||
| class GradofAllInputsAndParams(nn.Cell): | |||
| def __init__(self, net, sens=False): | |||
| super().__init__() | |||
| self.grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=sens) | |||
| self.net = net | |||
| self.params = ParameterTuple(self.net.trainable_params()) | |||
| def construct(self, *x): | |||
| out = self.grad(self.net, self.params)(*x) | |||
| return out | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_diff_shape_with_while_in_construct(): | |||
| class WhileNetMs(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.conv = nn.Conv2d(1, 1, 3, weight_init='ones', pad_mode='pad') | |||
| def construct(self, x, flag): | |||
| while flag: | |||
| if flag > 1: | |||
| x = self.conv(x) | |||
| else: | |||
| x = x + 1 | |||
| flag = flag - 1 | |||
| return x | |||
| class WhileNetPt(nn_pt.Module): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.conv = nn_pt.Conv2d(in_channels=1, out_channels=1, kernel_size=(3, 3), | |||
| stride=1, padding=0, bias=False) | |||
| self.weight = nn_pt.Parameter(torch.from_numpy(np.ones([1, 1, 3, 3]).astype(np.float32))) | |||
| self.conv.register_parameter('weight', self.weight) | |||
| def forward(self, x, flag): | |||
| while flag: | |||
| if flag > 1: | |||
| x = self.conv(x) | |||
| else: | |||
| x = x + 1 | |||
| flag = flag - 1 | |||
| return x | |||
| net = WhileNetMs() | |||
| input_ms = Tensor(np.random.rand(1, 1, 224, 224).astype(np.float32)) | |||
| flag = 2 | |||
| out = net(input_ms, flag) | |||
| backnet = GradofAllInputsAndParams(net) | |||
| backout = backnet(input_ms, Tensor(flag, mstype.int32)) | |||
| comparenet = WhileNetPt() | |||
| torch_input = torch.from_numpy(input_ms.asnumpy()) | |||
| torch_input.requires_grad = True | |||
| torch_flag = torch.from_numpy(np.array(flag)) | |||
| torch_flag.requires_grad = False | |||
| out_good = comparenet(torch_input, torch_flag) | |||
| grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32)) | |||
| out_good.backward(gradient=grad) | |||
| assert np.allclose(out_good.detach().numpy(), out.asnumpy(), 0.01, 0.01) | |||
| assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01) | |||
| assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01) | |||
| flag = 3 | |||
| out = net(input_ms, flag) | |||
| backout = backnet(input_ms, Tensor(flag, mstype.int32)) | |||
| torch_flag = torch.from_numpy(np.array(flag)) | |||
| torch_flag.requires_grad = False | |||
| comparenet.zero_grad() | |||
| torch_input.grad.zero_() | |||
| out_good = comparenet(torch_input, torch_flag) | |||
| grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32)) | |||
| out_good.backward(gradient=grad) | |||
| assert np.allclose(out_good.detach().numpy(), out.asnumpy(), 0.01, 0.01) | |||
| assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01) | |||
| assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01) | |||
| input_ms = Tensor(np.random.rand(1, 1, 112, 112).astype(np.float32)) | |||
| flag = 4 | |||
| backout = backnet(input_ms, Tensor(flag, mstype.int32)) | |||
| torch_input = torch.from_numpy(input_ms.asnumpy()) | |||
| torch_input.requires_grad = True | |||
| torch_flag = torch.from_numpy(np.array(flag)) | |||
| torch_flag.requires_grad = False | |||
| comparenet.zero_grad() | |||
| out_good = comparenet(torch_input, torch_flag) | |||
| grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32)) | |||
| out_good.backward(gradient=grad) | |||
| assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01) | |||
| assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01) | |||