|
|
|
@@ -17,6 +17,7 @@ from mindspore.ops import operations as P |
|
|
|
from mindspore.ops import functional as F |
|
|
|
from mindspore.common.parameter import Parameter |
|
|
|
from mindspore.common.initializer import initializer |
|
|
|
from mindspore.ops.primitive import constexpr |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
import mindspore.context as context |
|
|
|
@@ -165,7 +166,9 @@ class _BatchNorm(Cell): |
|
|
|
def extend_repr(self): |
|
|
|
return 'num_features={}, eps={}, momentum={}, gamma={}, beta={}, moving_mean={}, moving_variance={}'.format( |
|
|
|
self.num_features, self.eps, self.momentum, self.gamma, self.beta, self.moving_mean, self.moving_variance) |
|
|
|
|
|
|
|
def _channel_check(channel, num_channel): |
|
|
|
if channel != num_channel: |
|
|
|
raise ValueError("the input channel is not equal with num_channels") |
|
|
|
|
|
|
|
class BatchNorm1d(_BatchNorm): |
|
|
|
r""" |
|
|
|
@@ -508,6 +511,7 @@ class GroupNorm(Cell): |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
batch, channel, height, width = self.shape(x) |
|
|
|
_channel_check(channel, self.num_channels) |
|
|
|
x = self.reshape(x, (batch, self.num_groups, channel*height*width/self.num_groups)) |
|
|
|
mean = self.reduce_mean(x, 2) |
|
|
|
var = self.reduce_sum(self.square(x - mean), 2) / (channel * height * width / self.num_groups - 1) |
|
|
|
|