| @@ -0,0 +1,156 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_ | |||||
| #include <securec.h> | |||||
| #include <math.h> | |||||
| #include <array> | |||||
| #include <iostream> | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| static constexpr int gResultNum = 4; | |||||
| class PhiloxGenerator { | |||||
| public: | |||||
| explicit PhiloxGenerator(uint64_t seed) { | |||||
| key_var_[0] = static_cast<uint32_t>(seed); | |||||
| key_var_[1] = static_cast<uint32_t>(seed >> 32); | |||||
| counter_[0] = 0; | |||||
| counter_[1] = 0; | |||||
| counter_[2] = static_cast<uint32_t>(seed); | |||||
| counter_[3] = static_cast<uint32_t>(seed >> 32); | |||||
| } | |||||
| void Jump() { | |||||
| if ((++counter_[0] == 0) && (++counter_[1] == 0) && (++counter_[2] == 0)) { | |||||
| ++counter_[3]; | |||||
| } | |||||
| } | |||||
| void JumpStep(uint64_t step) { | |||||
| uint64_t min_counter, max_counter; | |||||
| min_counter = static_cast<uint64_t>(counter_[1]); | |||||
| min_counter = min_counter << 32; | |||||
| min_counter += counter_[0]; | |||||
| max_counter = static_cast<uint64_t>(counter_[3]); | |||||
| max_counter = max_counter << 32; | |||||
| max_counter += counter_[2]; | |||||
| min_counter += step; | |||||
| if (min_counter < step) { | |||||
| max_counter++; | |||||
| } | |||||
| counter_[0] = static_cast<uint32_t>(min_counter); | |||||
| counter_[1] = static_cast<uint32_t>(min_counter >> 32); | |||||
| counter_[2] = static_cast<uint32_t>(max_counter); | |||||
| counter_[3] = static_cast<uint32_t>(max_counter >> 32); | |||||
| } | |||||
| static std::array<uint32_t, 4> Compute(const std::array<uint32_t, 4> &counter_, | |||||
| const std::array<uint32_t, 2> &key_var_) { | |||||
| std::array<uint32_t, 4> min_value; | |||||
| std::array<uint32_t, 4> max_value; | |||||
| for (uint32_t i = 0; i < gResultNum; i += 2) { | |||||
| uint64_t temp = static_cast<uint64_t>(keyConstant[i]) * counter_[i]; | |||||
| min_value[i] = static_cast<uint32_t>(temp); | |||||
| max_value[i] = static_cast<uint32_t>(temp >> 32); | |||||
| } | |||||
| std::array<uint32_t, 4> result; | |||||
| result[0] = (max_value[2] ^ counter_[1] ^ key_var_[0]); | |||||
| result[1] = min_value[2]; | |||||
| result[2] = (max_value[0] ^ counter_[3] ^ key_var_[0]); | |||||
| result[3] = min_value[0]; | |||||
| return result; | |||||
| } | |||||
| std::array<uint32_t, 4> operator()() { | |||||
| for (uint32_t i = 0; i < 10; i++) { | |||||
| counter_ = Compute(counter_, key_var_); | |||||
| key_var_[0] += keyConstant[1]; | |||||
| key_var_[1] += keyConstant[3]; | |||||
| } | |||||
| Jump(); | |||||
| return counter_; | |||||
| } | |||||
| private: | |||||
| std::array<uint32_t, 4> counter_; | |||||
| std::array<uint32_t, 2> key_var_; | |||||
| static constexpr std::array<uint32_t, 4> keyConstant = {0xD2511F53, 0x9E3779B9, 0xCD9E8D57, 0xBB67AE85}; | |||||
| }; | |||||
| template <class T, typename vartype> | |||||
| class NormalDistribution; | |||||
| template <class T> | |||||
| class NormalDistribution<T, float> { | |||||
| public: | |||||
| std::array<float, gResultNum> result; | |||||
| bool UInt32ToFloat32(uint32_t input, float *output) { | |||||
| const uint32_t temp_value = input & 0x7fffffu; | |||||
| const uint32_t exp = static_cast<uint32_t>(127); | |||||
| const uint32_t val = (exp << 23) | temp_value; | |||||
| errno_t mem_ret; | |||||
| mem_ret = memcpy_s(output, sizeof(val), &val, sizeof(val)); | |||||
| if (mem_ret != EOK) { | |||||
| std::cout << "UInt32ToFloat32 memcpy is failed" << std::endl; | |||||
| return false; | |||||
| } | |||||
| *output = *output - 1.0f; | |||||
| return true; | |||||
| } | |||||
| std::array<float, gResultNum> operator()(T *generator) { | |||||
| std::array<uint32_t, 4> generate_value = (*generator)(); | |||||
| const float PI = 3.14; | |||||
| for (uint32_t i = 0; i < gResultNum; i += 2) { | |||||
| float temp[2]; | |||||
| UInt32ToFloat32(generate_value[i], &temp[0]); | |||||
| UInt32ToFloat32(generate_value[i + 1], &temp[1]); | |||||
| const float threshold = 1.0e-7f; | |||||
| temp[0] = temp[0] < threshold ? threshold : temp[0]; | |||||
| temp[1] = temp[1] < threshold ? threshold : temp[1]; | |||||
| result[i] = sqrt(-2.0 * log(temp[0])) * sin(2 * PI * temp[1]); | |||||
| result[i + 1] = sqrt(-2.0 * log(temp[0])) * cos(2 * PI * temp[1]); | |||||
| } | |||||
| return result; | |||||
| } | |||||
| }; | |||||
| template <class T> | |||||
| bool FillRandoms(PhiloxGenerator generator, float *output, int64_t vet_size, int64_t thread_Id) { | |||||
| T distribution; | |||||
| errno_t mem_ret; | |||||
| generator.JumpStep((vet_size * thread_Id + gResultNum - 1) / gResultNum); | |||||
| for (int32_t i = 0; i < vet_size; i += gResultNum) { | |||||
| auto outputResult = distribution(&generator); | |||||
| if (vet_size - i >= gResultNum) { | |||||
| mem_ret = memcpy_s(&output[i], gResultNum * sizeof(float), &outputResult[0], gResultNum * sizeof(float)); | |||||
| } else { | |||||
| mem_ret = memcpy_s(&output[i], (vet_size - i) * sizeof(float), &outputResult[0], (vet_size - i) * sizeof(float)); | |||||
| } | |||||
| if (mem_ret != EOK) { | |||||
| std::cout << "FillRandoms memcpy is failed" << std::endl; | |||||
| return false; | |||||
| } | |||||
| } | |||||
| return true; | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_ | |||||
| @@ -94,6 +94,8 @@ PYBIND11_MODULE(_c_expression, m) { | |||||
| (void)m.def("init_exec_dataset", &mindspore::pipeline::InitExecDataset, py::arg("queue_name"), py::arg("size"), | (void)m.def("init_exec_dataset", &mindspore::pipeline::InitExecDataset, py::arg("queue_name"), py::arg("size"), | ||||
| py::arg("batch_size"), py::arg("types"), py::arg("shapes"), py::arg("input_indexs"), | py::arg("batch_size"), py::arg("types"), py::arg("shapes"), py::arg("input_indexs"), | ||||
| py::arg("phase") = py::str("dataset"), py::arg("need_run") = py::bool_(true), "Init and exec dataset."); | py::arg("phase") = py::str("dataset"), py::arg("need_run") = py::bool_(true), "Init and exec dataset."); | ||||
| (void)m.def("random_normal", &mindspore::pipeline::InitRandomNormal, py::arg("mean"), py::arg("stddev"), | |||||
| py::arg("outshape"), py::arg("seed"), py::arg("outputtensor"), "InitRandRandom"); | |||||
| (void)m.def("_set_dataset_mode_config", &mindspore::ConfigManager::SetDatasetModeConfig, "API for set dataset mode."); | (void)m.def("_set_dataset_mode_config", &mindspore::ConfigManager::SetDatasetModeConfig, "API for set dataset mode."); | ||||
| (void)m.def("init_backend", &mindspore::pipeline::InitBackend, "Init Backend."); | (void)m.def("init_backend", &mindspore::pipeline::InitBackend, "Init Backend."); | ||||
| @@ -41,6 +41,7 @@ | |||||
| #include "pipeline/pynative/pynative_execute.h" | #include "pipeline/pynative/pynative_execute.h" | ||||
| #include "frontend/optimizer/py_pass_manager.h" | #include "frontend/optimizer/py_pass_manager.h" | ||||
| #include "pybind_api/pybind_patch.h" | #include "pybind_api/pybind_patch.h" | ||||
| #include "backend/kernel_compiler/cpu/random_op_cpu_kernel.h" | |||||
| #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU)) | #if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU)) | ||||
| #include "frontend/parallel/ps/common.h" | #include "frontend/parallel/ps/common.h" | ||||
| @@ -878,6 +879,50 @@ bool InitExecDatasetVm(const std::string &queue_name, int64_t size, int64_t batc | |||||
| return true; | return true; | ||||
| } | } | ||||
| bool InitRandomNormal(float mean, float stddev, std::vector<int64_t> out_shape, int64_t seed, | |||||
| const py::object &output_tensor) { | |||||
| if (out_shape.size() == 0) { | |||||
| std::cout << "output data shape is error" << std::endl; | |||||
| } | |||||
| int64_t total_count = 1; | |||||
| for (uint32_t i = 0; i < out_shape.size(); i++) { | |||||
| total_count *= out_shape[i]; | |||||
| } | |||||
| uint32_t thread_num = 16; | |||||
| if (total_count <= thread_num) { | |||||
| thread_num = 1; | |||||
| } | |||||
| auto temp = py::cast<std::shared_ptr<Tensor>>(output_tensor); | |||||
| float *start_ptr = reinterpret_cast<float *>(temp->data_c()); | |||||
| if (start_ptr == nullptr) { | |||||
| std::cout << "start_ptr is nullptr" << std::endl; | |||||
| return false; | |||||
| } | |||||
| int64_t batchSize = total_count / thread_num; | |||||
| std::vector<std::thread> threads(thread_num); | |||||
| mindspore::kernel::PhiloxGenerator generator = mindspore::kernel::PhiloxGenerator(seed); | |||||
| if (thread_num != 1) { | |||||
| for (uint32_t i = 0; i < thread_num - 1; i++) { | |||||
| float *offset_ptr = start_ptr + batchSize * i; | |||||
| threads[i] = std::thread(mindspore::kernel::FillRandoms< | |||||
| mindspore::kernel::NormalDistribution<mindspore::kernel::PhiloxGenerator, float>>, | |||||
| generator, offset_ptr, batchSize, i); | |||||
| } | |||||
| float *offset_ptr = start_ptr + batchSize * (thread_num - 1); | |||||
| threads[thread_num - 1] = std::thread( | |||||
| mindspore::kernel::FillRandoms<mindspore::kernel::NormalDistribution<mindspore::kernel::PhiloxGenerator, float>>, | |||||
| generator, offset_ptr, total_count - (thread_num - 1) * batchSize, thread_num - 1); | |||||
| } else { | |||||
| threads[0] = std::thread( | |||||
| mindspore::kernel::FillRandoms<mindspore::kernel::NormalDistribution<mindspore::kernel::PhiloxGenerator, float>>, | |||||
| generator, start_ptr, total_count, 0); | |||||
| } | |||||
| for (uint32_t i = 0; i < thread_num; i++) { | |||||
| threads[i].join(); | |||||
| } | |||||
| return true; | |||||
| } | |||||
| void ResetOpId() { mindspore::id_generator::reset_id(); } | void ResetOpId() { mindspore::id_generator::reset_id(); } | ||||
| void InitHccl() { | void InitHccl() { | ||||
| @@ -139,6 +139,10 @@ bool InitExecDatasetVm(const std::string &queue_name, int64_t size, int64_t batc | |||||
| const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes, | const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes, | ||||
| const std::vector<int64_t> &input_indexes, bool need_run); | const std::vector<int64_t> &input_indexes, bool need_run); | ||||
| // init random normal | |||||
| bool InitRandomNormal(float mean, float stddev, std::vector<int64_t> outshape, int64_t seed, | |||||
| const py::object &outputTensor); | |||||
| void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *const arg_list); | void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *const arg_list); | ||||
| } // namespace pipeline | } // namespace pipeline | ||||
| @@ -23,6 +23,7 @@ from mindspore import log as logger | |||||
| from . import dtype as mstype | from . import dtype as mstype | ||||
| from .tensor import Tensor | from .tensor import Tensor | ||||
| from .._c_expression import random_normal | |||||
| _INITIALIZER_ALIAS = dict() | _INITIALIZER_ALIAS = dict() | ||||
| @@ -279,9 +280,12 @@ class Normal(Initializer): | |||||
| self.sigma = sigma | self.sigma = sigma | ||||
| def _initialize(self, arr): | def _initialize(self, arr): | ||||
| tmp = np.random.normal(0, self.sigma, arr.shape) | |||||
| _assignment(arr, tmp) | |||||
| seed = np.random.get_state()[1][0] | |||||
| output_tensor = Tensor(np.zeros(arr.shape, dtype=np.float32)) | |||||
| random_normal(0, self.sigma, arr.shape, seed, output_tensor) | |||||
| output_data = output_tensor.asnumpy() | |||||
| output_data *= self.sigma | |||||
| _assignment(arr, output_data) | |||||
| @_register() | @_register() | ||||
| class TruncatedNormal(Initializer): | class TruncatedNormal(Initializer): | ||||
| @@ -327,6 +331,8 @@ def initializer(init, shape=None, dtype=mstype.float32): | |||||
| Examples: | Examples: | ||||
| >>> tensor = initializer('ones', [1, 2, 3], mindspore.float32) | >>> tensor = initializer('ones', [1, 2, 3], mindspore.float32) | ||||
| >>> tensor = initializer(One(), [1, 2, 3], mindspore.float32) | |||||
| >>> tensor = initializer(0, [1, 2, 3], mindspore.float32) | |||||
| """ | """ | ||||
| if not isinstance(init, (Tensor, numbers.Number, str, Initializer)): | if not isinstance(init, (Tensor, numbers.Number, str, Initializer)): | ||||
| raise TypeError("Unsupported init type '{}'.".format(type(init))) | raise TypeError("Unsupported init type '{}'.".format(type(init))) | ||||