| @@ -76,6 +76,12 @@ PYBIND_REGISTER( | |||
| THROW_IF_ERROR(de.GetOutputTypes(&out)); | |||
| return out; | |||
| }) | |||
| .def("GetDataInfo", | |||
| [](DEPipeline &de) { | |||
| py::list types, shapes; | |||
| THROW_IF_ERROR(de.GetDataInfo(&types, &shapes)); | |||
| return py::make_tuple(types, shapes); | |||
| }) | |||
| .def("GetDatasetSize", &DEPipeline::GetDatasetSize) | |||
| .def("GetBatchSize", &DEPipeline::GetBatchSize) | |||
| .def("GetNumClasses", &DEPipeline::GetNumClasses) | |||
| @@ -241,6 +241,30 @@ Status DEPipeline::GetNextAsList(py::list *output) { | |||
| return Status::OK(); | |||
| } | |||
| Status DEPipeline::GetDataInfo(py::list *types, py::list *shapes) { | |||
| Status s; | |||
| DATA_INFO data_info; | |||
| // tree_.root() must be DeviceQueueOp | |||
| DeviceQueueOp *op = dynamic_cast<DeviceQueueOp *>(tree_->root().get()); | |||
| if (op == nullptr) { | |||
| return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, "GetDataInfo only supported by DeviceQueueOp"); | |||
| } | |||
| { | |||
| py::gil_scoped_release gil_release; | |||
| s = op->GetDataInfo(&data_info); | |||
| } | |||
| RETURN_IF_NOT_OK(s); | |||
| for (auto el : data_info) { | |||
| types->append(el.first.AsNumpyType()); | |||
| py::list shape; | |||
| for (auto dim : el.second.AsVector()) { | |||
| shape.append(dim); | |||
| } | |||
| shapes->append(shape); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status DEPipeline::GetOutputShapes(py::list *output) { | |||
| std::vector<TensorShape> shapes; | |||
| Status s; | |||
| @@ -1070,6 +1094,8 @@ Status DEPipeline::ParseDeviceQueueOp(const py::dict &args, std::shared_ptr<Data | |||
| (void)builder->SetSendEpochEnd(ToBool(value)); | |||
| } else if (key == "total_batch") { | |||
| (void)builder->SetTotalBatch(ToInt(value)); | |||
| } else if (key == "create_data_info_queue") { | |||
| (void)builder->SetCreateDataInfoQueue(ToBool(value)); | |||
| } | |||
| } | |||
| } | |||
| @@ -111,6 +111,8 @@ class DEPipeline { | |||
| Status GetOutputTypes(py::list *output); | |||
| Status GetDataInfo(py::list *types, py::list *shapes); | |||
| Status SaveDataset(const std::vector<std::string> &file_names, const std::string &file_type); | |||
| int GetDatasetSize() const; | |||
| @@ -33,7 +33,7 @@ | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| DeviceQueueOp::DeviceQueueOp(std::string channel_name, DeviceType device_type, int32_t device_id, int32_t prefetch_size, | |||
| bool send_epoch_end, int32_t total_batch) | |||
| bool send_epoch_end, int32_t total_batch, bool create_data_info_queue) | |||
| : PipelineOp(1), | |||
| channel_name_(channel_name), | |||
| device_type_(device_type), | |||
| @@ -41,7 +41,8 @@ DeviceQueueOp::DeviceQueueOp(std::string channel_name, DeviceType device_type, i | |||
| prefetch_size_(prefetch_size), | |||
| send_epoch_end_(send_epoch_end), | |||
| stop_send_(false), | |||
| total_batch_(total_batch) { | |||
| total_batch_(total_batch), | |||
| create_data_info_queue_(create_data_info_queue) { | |||
| #ifdef ENABLE_TDTQUE | |||
| ascend_keep_waiting_ = true; | |||
| #endif | |||
| @@ -87,6 +88,10 @@ Status DeviceQueueOp::operator()() { | |||
| if (device_type_ == DeviceType::Ascend) { | |||
| #ifdef ENABLE_TDTQUE | |||
| if (create_data_info_queue_) { | |||
| data_info_queue_ptr_ = std::make_unique<DATA_INFO_QUEUE>(kDataInfoQueueCapacity); | |||
| RETURN_IF_NOT_OK(data_info_queue_ptr_->Register(tree_->AllTasks())); | |||
| } | |||
| RETURN_IF_NOT_OK(SendDataToAscend()); | |||
| #endif | |||
| } else if (device_type_ == DeviceType::GPU) { | |||
| @@ -142,6 +147,13 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| return Status(StatusCode::kTDTPushFailure, "TDT Push Failed"); | |||
| } | |||
| } | |||
| if (create_data_info_queue_) { | |||
| DATA_INFO data_info; | |||
| (void)std::transform( | |||
| currRow.begin(), currRow.end(), std::back_inserter(data_info), | |||
| [](const std::shared_ptr<Tensor> &ts) { return std::make_pair(ts->type(), ts->shape()); }); | |||
| RETURN_IF_NOT_OK(data_info_queue_ptr_->Add(data_info)); | |||
| } | |||
| if (isProfilingEnable) { | |||
| end_time = ProfilingTime::GetCurMilliSecond(); | |||
| @@ -157,6 +169,7 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| profiling_node->Record(CONNECTOR_DEPTH, connector_capacity, send_batch + 1, connector_size); | |||
| } | |||
| send_batch++; | |||
| if (total_batch_ > 0 && send_batch >= total_batch_) { | |||
| is_break_loop = true; | |||
| break; | |||
| @@ -196,6 +209,21 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| return Status::OK(); | |||
| } | |||
| #endif | |||
| #ifdef ENABLE_TDTQUE | |||
| Status DeviceQueueOp::GetDataInfo(DATA_INFO *data_info) { | |||
| if (!create_data_info_queue_) { | |||
| return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, "DataInfo queue is not created."); | |||
| } | |||
| RETURN_IF_NOT_OK(data_info_queue_ptr_->PopFront(data_info)); | |||
| return Status::OK(); | |||
| } | |||
| #else | |||
| Status DeviceQueueOp::GetDataInfo(DATA_INFO *data_info) { | |||
| return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, "GetDataInfo is not supported yet."); | |||
| } | |||
| #endif | |||
| #ifdef ENABLE_GPUQUE | |||
| @@ -18,6 +18,7 @@ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "minddata/dataset/engine/datasetops/pipeline_op.h" | |||
| @@ -25,6 +26,7 @@ | |||
| #include "minddata/dataset/util/status.h" | |||
| #ifdef ENABLE_TDTQUE | |||
| #include "minddata/dataset/util/queue.h" | |||
| #include "minddata/dataset/engine/tdt/tdt_plugin.h" | |||
| #endif | |||
| @@ -37,6 +39,10 @@ using mindspore::device::GpuBufferMgr; | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| using DATA_INFO = std::vector<std::pair<DataType, TensorShape>>; | |||
| using DATA_INFO_QUEUE = Queue<DATA_INFO>; | |||
| const int kDataInfoQueueCapacity = 128; | |||
| class DeviceQueueOp : public PipelineOp { | |||
| public: | |||
| static const uint32_t INVALID_HANDLE = 0xffffffffUL; | |||
| @@ -91,13 +97,18 @@ class DeviceQueueOp : public PipelineOp { | |||
| return *this; | |||
| } | |||
| Builder &SetCreateDataInfoQueue(bool create_data_info_queue) { | |||
| builder_create_data_info_queue_ = create_data_info_queue; | |||
| return *this; | |||
| } | |||
| // Name: Build() | |||
| // Description: The final step for building a DeviceQueueOp via the Builder is | |||
| // to call this Build() method. It will instantiate the DeviceQueueOp | |||
| // and return it to caller as a shared pointer. | |||
| Status Build(std::shared_ptr<DeviceQueueOp> *ptr) { | |||
| *ptr = std::make_shared<DeviceQueueOp>(builder_channel_name_, builder_device_type_, builder_device_id_, | |||
| builder_prefetch_size_, builder_send_epoch_end_, builder_total_batch_); | |||
| builder_prefetch_size_, builder_send_epoch_end_, builder_total_batch_, | |||
| builder_create_data_info_queue_); | |||
| return Status::OK(); | |||
| } | |||
| @@ -108,12 +119,13 @@ class DeviceQueueOp : public PipelineOp { | |||
| std::string builder_channel_name_; | |||
| bool builder_send_epoch_end_; | |||
| int32_t builder_total_batch_; | |||
| bool builder_create_data_info_queue_; | |||
| }; | |||
| // Name: constructor | |||
| // Description | |||
| DeviceQueueOp(std::string channel_name, DeviceType device_type, int32_t device_id, int32_t prefetch_size, | |||
| bool send_epoch_end, int32_t total_batch); | |||
| bool send_epoch_end, int32_t total_batch, bool create_data_info_queue); | |||
| // Name: destructor | |||
| // Description | |||
| @@ -138,6 +150,8 @@ class DeviceQueueOp : public PipelineOp { | |||
| void StopWaiting() { ascend_keep_waiting_ = false; } | |||
| #endif | |||
| Status GetDataInfo(DATA_INFO *data_info); | |||
| // Name: Print() | |||
| // Description: A function that prints info about the node | |||
| void Print(std::ostream &out, // In: The output stream to print to | |||
| @@ -170,6 +184,7 @@ class DeviceQueueOp : public PipelineOp { | |||
| #ifdef ENABLE_TDTQUE | |||
| Status SendDataToAscend(); | |||
| bool ascend_keep_waiting_; | |||
| #endif | |||
| #ifdef ENABLE_GPUQUE | |||
| @@ -190,6 +205,8 @@ class DeviceQueueOp : public PipelineOp { | |||
| const bool send_epoch_end_; | |||
| bool stop_send_; | |||
| int32_t total_batch_; | |||
| bool create_data_info_queue_; | |||
| std::unique_ptr<DATA_INFO_QUEUE> data_info_queue_ptr_; | |||
| #ifdef ENABLE_TDTQUE | |||
| std::shared_ptr<TdtPlugin> tdtInstancePtr; | |||
| @@ -62,9 +62,8 @@ std::vector<std::shared_ptr<DatasetOp>> TransferNode::Build() { | |||
| } else if (device_type_ == "Ascend") { | |||
| type = DeviceQueueOp::DeviceType::Ascend; | |||
| } | |||
| node_ops.push_back( | |||
| std::make_shared<DeviceQueueOp>(queue_name_, type, device_id_, prefetch_size_, send_epoch_end_, total_batch_)); | |||
| node_ops.push_back(std::make_shared<DeviceQueueOp>(queue_name_, type, device_id_, prefetch_size_, send_epoch_end_, | |||
| total_batch_, false)); | |||
| return node_ops; | |||
| } | |||
| @@ -1005,7 +1005,7 @@ class Dataset: | |||
| return dataset | |||
| @check_device_send | |||
| def device_que(self, prefetch_size=None, send_epoch_end=True): | |||
| def device_que(self, prefetch_size=None, send_epoch_end=True, create_data_info_queue=False): | |||
| """ | |||
| Return a transferred Dataset that transfers data through a device. | |||
| @@ -1013,6 +1013,8 @@ class Dataset: | |||
| prefetch_size (int, optional): Prefetch number of records ahead of the | |||
| user's request (default=None). | |||
| send_epoch_end (bool, optional): Whether to send end of sequence to device or not (default=True). | |||
| create_data_info_queue (bool, optional): Whether to create queue which stores | |||
| types and shapes of data or not(default=False). | |||
| Note: | |||
| If device is Ascend, features of data will be transferred one by one. The limitation | |||
| @@ -1021,15 +1023,17 @@ class Dataset: | |||
| Return: | |||
| TransferDataset, dataset for transferring. | |||
| """ | |||
| return self.to_device(send_epoch_end=send_epoch_end) | |||
| return self.to_device(send_epoch_end=send_epoch_end, create_data_info_queue=create_data_info_queue) | |||
| @check_device_send | |||
| def to_device(self, send_epoch_end=True): | |||
| def to_device(self, send_epoch_end=True, create_data_info_queue=False): | |||
| """ | |||
| Transfer data through CPU, GPU or Ascend devices. | |||
| Args: | |||
| send_epoch_end (bool, optional): Whether to send end of sequence to device or not (default=True). | |||
| create_data_info_queue (bool, optional): Whether to create queue which stores | |||
| types and shapes of data or not(default=False). | |||
| Note: | |||
| If device is Ascend, features of data will be transferred one by one. The limitation | |||
| @@ -1078,7 +1082,7 @@ class Dataset: | |||
| distribution_path, device_id = get_distribution(self) | |||
| if distribution_path == "": | |||
| return TransferDataset(self, queue_name, device_id, device_type, send_epoch_end) | |||
| return TransferDataset(self, queue_name, device_id, device_type, send_epoch_end, create_data_info_queue) | |||
| try: | |||
| with open(distribution_path, 'r') as distribution_f: | |||
| dist = json.load(distribution_f) | |||
| @@ -1088,7 +1092,7 @@ class Dataset: | |||
| except Exception: | |||
| raise RuntimeError("Failed to read Distribution file.") | |||
| return TransferDataset(self, queue_name, device_id, device_type, send_epoch_end) | |||
| return TransferDataset(self, queue_name, device_id, device_type, send_epoch_end, create_data_info_queue) | |||
| @check_save | |||
| def save(self, file_name, num_files=1, file_type='mindrecord'): | |||
| @@ -2640,9 +2644,12 @@ class TransferDataset(DatasetOp): | |||
| device_id (int): ID of device. | |||
| device_type (str): Type of device, including "CPU", "GPU", and "Ascend". | |||
| send_epoch_end (bool, optional): Whether to send end of sequence to device or not (default=True). | |||
| create_data_info_queue (bool, optional): Whether to create queue which stores | |||
| types and shapes of data or not(default=False). | |||
| """ | |||
| def __init__(self, input_dataset, queue_name, device_id, device_type, send_epoch_end=True): | |||
| def __init__(self, input_dataset, queue_name, device_id, device_type, send_epoch_end=True, | |||
| create_data_info_queue=False): | |||
| super().__init__() | |||
| self.children.append(input_dataset) | |||
| input_dataset.parent.append(self) | |||
| @@ -2652,6 +2659,7 @@ class TransferDataset(DatasetOp): | |||
| self._device_id = device_id | |||
| self._send_epoch_end = send_epoch_end | |||
| self.iterator = None | |||
| self._create_data_info_queue = create_data_info_queue | |||
| def get_args(self): | |||
| args = super().get_args() | |||
| @@ -2661,6 +2669,7 @@ class TransferDataset(DatasetOp): | |||
| args["send_epoch_end"] = self._send_epoch_end | |||
| if hasattr(self.children[0], "__total_batch__"): | |||
| args["total_batch"] = self.children[0].__total_batch__ | |||
| args["create_data_info_queue"] = self._create_data_info_queue | |||
| return args | |||
| def create_dict_iterator(self, num_epochs=-1, output_numpy=False): | |||
| @@ -2692,6 +2701,9 @@ class TransferDataset(DatasetOp): | |||
| def continue_send(self): | |||
| self.iterator.depipeline.ContinueSend() | |||
| def get_data_info(self): | |||
| return self.iterator.depipeline.GetDataInfo() | |||
| class RangeDataset(MappableDataset): | |||
| """ | |||
| @@ -50,7 +50,7 @@ def _get_types_and_shapes(dataset): | |||
| return dataset_types, dataset_shapes | |||
| def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'): | |||
| def _exec_datagraph(exec_dataset, dataset_size, phase='dataset', create_data_info_queue=False): | |||
| """Initialize and execute the dataset graph.""" | |||
| batch_size = exec_dataset.get_batch_size() | |||
| input_indexs = exec_dataset.input_indexs | |||
| @@ -58,7 +58,7 @@ def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'): | |||
| # transform data format | |||
| dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset) | |||
| send_epoch_end = bool(dataset_size == -1) | |||
| exec_dataset = exec_dataset.device_que(send_epoch_end=send_epoch_end) | |||
| exec_dataset = exec_dataset.device_que(send_epoch_end=send_epoch_end, create_data_info_queue=create_data_info_queue) | |||
| _executor.init_dataset(exec_dataset.queue_name, | |||
| dataset_size, | |||
| @@ -17,6 +17,7 @@ import math | |||
| import os | |||
| from mindspore._checkparam import Validator | |||
| from mindspore.common.dtype import pytype_to_dtype | |||
| from .. import context, nn | |||
| from ._utils import _exec_datagraph, _get_types_and_shapes, _construct_tensor_list | |||
| from ..nn.wrap import GetNextSingleOp | |||
| @@ -31,6 +32,7 @@ def _send_data(dataset, epoch_num): | |||
| exec_dataset.send(epoch_num) | |||
| dataset.__has_sent__ = True | |||
| def _send_data_no_flag(dataset, epoch_num): | |||
| """Engine dataset to write data to tdt queue directly.""" | |||
| exec_dataset = dataset.__transfer_dataset__ | |||
| @@ -70,6 +72,7 @@ def connect_network_with_dataset(network, dataset_helper): | |||
| Wraps the input network with a dataset which automatically fetches data with 'GetNext' function from the | |||
| dataset channel 'queue_name' and performs the forward computation. | |||
| """ | |||
| def __init__(self, network, dataset_types, dataset_shapes, queue_name): | |||
| super(_DataWrapper, self).__init__(auto_prefix=False, flags=network.get_flags()) | |||
| # Also copy the flag in `network` construct | |||
| @@ -88,9 +91,30 @@ def connect_network_with_dataset(network, dataset_helper): | |||
| if isinstance(dataset_iter, _DatasetIterNormal): | |||
| raise RuntimeError("Dataset should be connected with network only in sink mode.") | |||
| if not hasattr(dataset, '__me_inited__') and (context.get_context("device_target") == "Ascend" | |||
| or context.get_context("device_target") == "GPU") and not \ | |||
| context.get_context("enable_ge"): | |||
| if (hasattr(dataset_iter, "sink_size") and dataset_iter.sink_size == 1) \ | |||
| and (hasattr(dataset_iter, "sink_count") and dataset_iter.sink_count == 1) \ | |||
| and context.get_context("device_target") == "Ascend": | |||
| if not hasattr(dataset, '__network__'): | |||
| dataset.__network__ = network | |||
| network = dataset.__network__ | |||
| dataset_types, dataset_shapes = dataset_helper.get_data_info() | |||
| dataset_types = [pytype_to_dtype(x) for x in dataset_types] | |||
| key = str(dataset_types) + str(dataset_shapes) | |||
| if hasattr(dataset, '__network_manage__') and key in dataset.__network_manage__: | |||
| network = dataset.__network_manage__[key] | |||
| else: | |||
| network = _DataWrapper(network, dataset_types, dataset_shapes, dataset.__transfer_dataset__.queue_name) | |||
| dataset.__network_manage__ = dataset.__network_manage__ if hasattr( | |||
| dataset, '__network_manage__') else dict() | |||
| dataset.__network_manage__[key] = network | |||
| return network | |||
| if not hasattr(dataset, '__me_inited__') and (context.get_context("device_target") == "Ascend" or \ | |||
| context.get_context("device_target") == "GPU") and not context.get_context("enable_ge"): | |||
| dataset.__me_inited__ = True | |||
| dataset_types, dataset_shapes = dataset_helper.types_shapes() | |||
| @@ -99,7 +123,6 @@ def connect_network_with_dataset(network, dataset_helper): | |||
| network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name) | |||
| return network | |||
| class DatasetHelper: | |||
| """ | |||
| DatasetHelper is a class to process the MindData dataset and it provides the information of dataset. | |||
| @@ -171,18 +194,25 @@ class DatasetHelper: | |||
| """continue send data to device at the beginning of epoch.""" | |||
| self.iter.continue_send() | |||
| def get_data_info(self): | |||
| return self.iter.get_data_info() | |||
| class _DatasetIter: | |||
| """Base iter for dataset helper""" | |||
| def __init__(self, dataset, sink_size, epoch_num): | |||
| self.dataset = dataset | |||
| self.sink_size = sink_size | |||
| self.sink_count = 1 | |||
| self.sink_count = self.get_sink_count(dataset) | |||
| if not hasattr(dataset, '__transfer_dataset__'): | |||
| if hasattr(dataset, '__loop_size__'): | |||
| self.sink_size = dataset.__loop_size__ | |||
| dataset.__transfer_dataset__ = _exec_datagraph(dataset, self.sink_size) | |||
| create_data_info_queue = (sink_size == 1 and self.sink_count == 1 and context.get_context( | |||
| "device_target") == "Ascend") | |||
| dataset.__transfer_dataset__ = _exec_datagraph(dataset, self.sink_size, | |||
| create_data_info_queue=create_data_info_queue) | |||
| if not hasattr(dataset, '__no_send__'): | |||
| _send_data(dataset, epoch_num) | |||
| @@ -191,6 +221,7 @@ class _DatasetIter: | |||
| self.stop_send = dataset.__transfer_dataset__.stop_send | |||
| self.continue_send = dataset.__transfer_dataset__.continue_send | |||
| self.get_data_info = dataset.__transfer_dataset__.get_data_info | |||
| self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset) | |||
| def __iter__(self): | |||
| @@ -223,7 +254,7 @@ class _DatasetIter: | |||
| sink_size = self.dataset.__loop_size__ | |||
| else: | |||
| if context.get_context("enable_ge") or context.get_context("device_target") == "Ascend" \ | |||
| or context.get_context("device_target") == "GPU": | |||
| or context.get_context("device_target") == "GPU": | |||
| if self.sink_size > 0: | |||
| sink_size = self.sink_size | |||
| else: | |||
| @@ -233,6 +264,7 @@ class _DatasetIter: | |||
| class _DatasetIterGE(_DatasetIter): | |||
| """Iter for GE.""" | |||
| def __init__(self, dataset, sink_size, epoch_num): | |||
| super().__init__(dataset, sink_size, epoch_num) | |||
| self.sink_count = self.get_sink_count(dataset) | |||
| @@ -249,6 +281,7 @@ class _DatasetIterGE(_DatasetIter): | |||
| class _DatasetIterMSLoopSink(_DatasetIter): | |||
| """Iter for context (device_target=Ascend)""" | |||
| def __init__(self, dataset, sink_size, epoch_num): | |||
| super().__init__(dataset, sink_size, epoch_num) | |||
| self.sink_count = self.get_sink_count(dataset) | |||
| @@ -270,6 +303,7 @@ class _DatasetIterMSLoopSink(_DatasetIter): | |||
| class _DatasetIterMS(_DatasetIter): | |||
| """Iter for MS(enable_loop_sink=False).""" | |||
| def __init__(self, dataset, sink_size, epoch_num): | |||
| super().__init__(dataset, sink_size, epoch_num) | |||
| if sink_size > 0: | |||
| @@ -283,11 +317,13 @@ class _DatasetIterMS(_DatasetIter): | |||
| class _DatasetIterPSLite(_DatasetIter): | |||
| """Iter for context (device_target=GPU) on MS_PSERVER or MS_SCHED""" | |||
| def __init__(self, dataset, sink_size, epoch_num): | |||
| super().__init__(dataset, sink_size, epoch_num) | |||
| self.sink_count = 1 | |||
| self.sink_size = 1 | |||
| self.op = None | |||
| def op(): | |||
| return _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num=1) | |||
| self.op = op | |||
| @@ -250,11 +250,14 @@ class Model: | |||
| scaling_sens /= self._device_number | |||
| return scaling_sens | |||
| def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1): | |||
| def _exec_preprocess(self, network, is_train, phase, dataset, | |||
| dataset_sink_mode, sink_size=-1, epoch_num=1, dataset_helper=None): | |||
| """Initializes dataset.""" | |||
| if dataset_sink_mode and not is_train: | |||
| dataset.__loop_size__ = 1 | |||
| dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num) | |||
| if dataset_helper is None: | |||
| dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num) | |||
| if dataset_sink_mode: | |||
| network = connect_network_with_dataset(network, dataset_helper) | |||
| @@ -405,15 +408,6 @@ class Model: | |||
| epoch_num = math.ceil(epoch * sink_size / train_dataset.get_dataset_size()) | |||
| train_dataset.__total_batch__ = epoch * sink_size | |||
| dataset_helper, train_network = self._exec_preprocess(self._train_network, | |||
| is_train=True, | |||
| phase='train', | |||
| dataset=train_dataset, | |||
| dataset_sink_mode=True, | |||
| sink_size=sink_size, | |||
| epoch_num=epoch_num) | |||
| self._train_network = train_network | |||
| cb_params.train_network = self._train_network | |||
| cb_params.cur_step_num = 0 | |||
| run_context = RunContext(cb_params) | |||
| @@ -421,9 +415,21 @@ class Model: | |||
| # used to stop training for early stop, such as stopAtTIme or stopATStep | |||
| should_stop = False | |||
| dataset_helper = None | |||
| for i in range(epoch): | |||
| cb_params.cur_epoch_num = i + 1 | |||
| list_callback.epoch_begin(run_context) | |||
| dataset_helper, train_network = self._exec_preprocess(self._train_network, | |||
| is_train=True, | |||
| phase='train', | |||
| dataset=train_dataset, | |||
| dataset_sink_mode=True, | |||
| sink_size=sink_size, | |||
| epoch_num=epoch_num, | |||
| dataset_helper=dataset_helper) | |||
| self._train_network = train_network | |||
| cb_params.train_network = self._train_network | |||
| # for data sink dataset_helper only iter once, other wise iter epoch_size times. | |||
| for inputs in dataset_helper: | |||
| @@ -133,7 +133,7 @@ def tokenize_lambada(file_path): | |||
| with open(file_path, 'r', encoding='utf-8') as f: | |||
| for line in f.readlines(): | |||
| para = json.loads(line)['text'].replace( | |||
| "“", '""').replace("”", '"').strip().strip(".") | |||
| "“", '"').replace("”", '"').strip().strip(".") | |||
| tokenized_text = tokenizer.tokenize(para) | |||
| content += tokenizer.convert_tokens_to_ids(tokenized_text) + [EOT] | |||
| for chunk in chunks(content, SEQ_LEN): | |||
| @@ -50,7 +50,7 @@ class MindData: | |||
| def input_indexs(self): | |||
| return self._input_indexs | |||
| def device_que(self, send_epoch_end=True): | |||
| def device_que(self, send_epoch_end=True, create_data_info_queue=False): | |||
| self.queue_name = '6ba41974-209e-11ea-88b0-a24efeb2c736' | |||
| self.send_epoch_end = send_epoch_end | |||
| return self | |||
| @@ -61,6 +61,9 @@ class MindData: | |||
| def send(self, num_epochs=-1): | |||
| pass | |||
| def get_data_info(self): | |||
| pass | |||
| def stop_send(self): | |||
| pass | |||