From: @liu_xiao_93 Reviewed-by: @liangchenghui Signed-off-by: @liangchenghuitags/v1.1.0
| @@ -53,7 +53,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A | |||
| NPUAllocFloatStatus, NPUClearFloatStatus, | |||
| NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus, | |||
| Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy, | |||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, IFMR, | |||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, | |||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan, TensorDot) | |||
| from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal, | |||
| @@ -98,7 +98,6 @@ __all__ = [ | |||
| 'EditDistance', | |||
| 'CropAndResize', | |||
| 'TensorAdd', | |||
| 'IFMR', | |||
| 'Argmax', | |||
| 'Argmin', | |||
| 'ArgMaxWithValue', | |||
| @@ -43,7 +43,8 @@ __all__ = ["MinMaxUpdatePerLayer", | |||
| "BatchNormFoldGradD", | |||
| "BatchNormFold2_D", | |||
| "BatchNormFold2GradD", | |||
| "BatchNormFold2GradReduce" | |||
| "BatchNormFold2GradReduce", | |||
| "IFMR" | |||
| ] | |||
| @@ -1384,3 +1385,66 @@ class WtsARQ(PrimitiveWithInfer): | |||
| validator.check_tensor_type_same({"w_min": w_min_dtype}, valid_types, self.name) | |||
| validator.check_tensor_type_same({"w_max": w_max_dtype}, valid_types, self.name) | |||
| return w_dtype | |||
| class IFMR(PrimitiveWithInfer): | |||
| """ | |||
| The TFMR(Input Feature Map Reconstruction). | |||
| Args: | |||
| min_percentile (float): Min init percentile. Default: 0.999999. | |||
| max_percentile (float): Max init percentile. Default: 0.999999. | |||
| search_range Union[list(float), tuple(float)]: Range of searching. Default: [0.7, 1.3]. | |||
| search_step (float): Step size of searching. Default: 0.01. | |||
| with_offset (bool): Whether using offset. Default: True. | |||
| Inputs: | |||
| - **data** (Tensor) - A Tensor of feature map. With float16 or float32 data type. | |||
| - **data_min** (Tensor) - A Tensor of min value of feature map, the shape is :math:`(1)`. | |||
| With float16 or float32 data type. | |||
| - **data_max** (Tensor) - A Tensor of max value of feature map, the shape is :math:`(1)`. | |||
| With float16 or float32 data type. | |||
| - **cumsum** (Tensor) - A `1-D` Tensor of cumsum bin of data. With int32 data type. | |||
| Outputs: | |||
| - **scale** (Tensor) - A tensor of optimal scale, the shape is :math:`(1)`. Data dtype is float32. | |||
| - **offset** (Tensor) - A tensor of optimal offset, the shape is :math:`(1)`. Data dtype is float32. | |||
| Examples: | |||
| >>> data = Tensor(np.random.rand(1, 3, 6, 4).astype(np.float32)) | |||
| >>> data_min = Tensor([0.1], mstype.float32) | |||
| >>> data_max = Tensor([0.5], mstype.float32) | |||
| >>> cumsum = Tensor(np.random.rand(4).astype(np.int32)) | |||
| >>> ifmr = Q.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0), | |||
| >>> search_step=1.0, with_offset=False) | |||
| >>> output = ifmr(data, data_min, data_max, cumsum) | |||
| ([7.87401572e-03], [0.00000000e+00]) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, min_percentile=0.999999, max_percentile=0.999999, search_range=(0.7, 1.3), search_step=0.01, | |||
| with_offset=True): | |||
| validator.check_value_type("min_percentile", min_percentile, [float], self.name) | |||
| validator.check_value_type("max_percentile", max_percentile, [float], self.name) | |||
| validator.check_value_type("search_range", search_range, [list, tuple], self.name) | |||
| for item in search_range: | |||
| validator.check_positive_float(item, "item of search_range", self.name) | |||
| validator.check('search_range[1]', search_range[1], 'search_range[0]', search_range[0], Rel.GE, self.name) | |||
| validator.check_value_type("search_step", search_step, [float], self.name) | |||
| validator.check_value_type("offset_flag", with_offset, [bool], self.name) | |||
| def infer_shape(self, data_shape, data_min_shape, data_max_shape, cumsum_shape): | |||
| validator.check_equal_int(len(data_min_shape), 1, "dims of data_min", self.name) | |||
| validator.check_equal_int(data_min_shape[0], 1, "data_min[0]", self.name) | |||
| validator.check_equal_int(len(data_max_shape), 1, "dims of data_max", self.name) | |||
| validator.check_equal_int(data_max_shape[0], 1, "data_max[0]", self.name) | |||
| validator.check_equal_int(len(cumsum_shape), 1, "dims of cumsum", self.name) | |||
| return (1,), (1,) | |||
| def infer_dtype(self, data_dtype, data_min_dtype, data_max_dtype, cumsum_dtype): | |||
| tuple(map(partial(validator.check_tensor_dtype_valid, | |||
| valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name), | |||
| ("input_value", "input_min", "input_max"), | |||
| (data_dtype, data_min_dtype, data_max_dtype))) | |||
| validator.check_tensor_dtype_valid("input_bins", cumsum_dtype, [mstype.int32], self.name) | |||
| return mstype.tensor_type(mstype.float32), mstype.tensor_type(mstype.float32) | |||
| @@ -16,7 +16,6 @@ | |||
| """Operators for math.""" | |||
| import copy | |||
| from functools import partial | |||
| import numpy as np | |||
| from ... import context | |||
| @@ -3680,66 +3679,3 @@ class Eps(PrimitiveWithInfer): | |||
| 'dtype': input_x['dtype'], | |||
| } | |||
| return out | |||
| class IFMR(PrimitiveWithInfer): | |||
| """ | |||
| The TFMR(Input Feature Map Reconstruction). | |||
| Args: | |||
| min_percentile (float): Min init percentile. Default: 0.999999. | |||
| max_percentile (float): Max init percentile. Default: 0.999999. | |||
| search_range Union[list(float), tuple(float)]: Range of searching. Default: [0.7, 1.3]. | |||
| search_step (float): Step size of searching. Default: 0.01. | |||
| with_offset (bool): Whether using offset. Default: True. | |||
| Inputs: | |||
| - **data** (Tensor) - A Tensor of feature map. With float16 or float32 data type. | |||
| - **data_min** (Tensor) - A Tensor of min value of feature map, the shape is :math:`(1)`. | |||
| With float16 or float32 data type. | |||
| - **data_max** (Tensor) - A Tensor of max value of feature map, the shape is :math:`(1)`. | |||
| With float16 or float32 data type. | |||
| - **cumsum** (Tensor) - A `1-D` Tensor of cumsum bin of data. With int32 data type. | |||
| Outputs: | |||
| - **scale** (Tensor) - A tensor of optimal scale, the shape is :math:`(1)`. Data dtype is float32. | |||
| - **offset** (Tensor) - A tensor of optimal offset, the shape is :math:`(1)`. Data dtype is float32. | |||
| Examples: | |||
| >>> data = Tensor(np.random.rand(1, 3, 6, 4).astype(np.float32)) | |||
| >>> data_min = Tensor([0.1], mstype.float32) | |||
| >>> data_max = Tensor([0.5], mstype.float32) | |||
| >>> cumsum = Tensor(np.random.rand(4).astype(np.int32)) | |||
| >>> ifmr = P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0), | |||
| search_step=1.0, with_offset=False) | |||
| >>> output = ifmr(data, data_min, data_max, cumsum) | |||
| ([7.87401572e-03], [0.00000000e+00]) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, min_percentile=0.999999, max_percentile=0.999999, search_range=(0.7, 1.3), search_step=0.01, | |||
| with_offset=True): | |||
| validator.check_value_type("min_percentile", min_percentile, [float], self.name) | |||
| validator.check_value_type("max_percentile", max_percentile, [float], self.name) | |||
| validator.check_value_type("search_range", search_range, [list, tuple], self.name) | |||
| for item in search_range: | |||
| validator.check_positive_float(item, "item of search_range", self.name) | |||
| validator.check('search_range[1]', search_range[1], 'search_range[0]', search_range[0], Rel.GE, self.name) | |||
| validator.check_value_type("search_step", search_step, [float], self.name) | |||
| validator.check_value_type("offset_flag", with_offset, [bool], self.name) | |||
| def infer_shape(self, data_shape, data_min_shape, data_max_shape, cumsum_shape): | |||
| validator.check_equal_int(len(data_min_shape), 1, "dims of data_min", self.name) | |||
| validator.check_equal_int(data_min_shape[0], 1, "data_min[0]", self.name) | |||
| validator.check_equal_int(len(data_max_shape), 1, "dims of data_max", self.name) | |||
| validator.check_equal_int(data_max_shape[0], 1, "data_max[0]", self.name) | |||
| validator.check_equal_int(len(cumsum_shape), 1, "dims of cumsum", self.name) | |||
| return (1,), (1,) | |||
| def infer_dtype(self, data_dtype, data_min_dtype, data_max_dtype, cumsum_dtype): | |||
| tuple(map(partial(validator.check_tensor_dtype_valid, | |||
| valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name), | |||
| ("input_value", "input_min", "input_max"), | |||
| (data_dtype, data_min_dtype, data_max_dtype))) | |||
| validator.check_tensor_dtype_valid("input_bins", cumsum_dtype, [mstype.int32], self.name) | |||
| return mstype.tensor_type(mstype.float32), mstype.tensor_type(mstype.float32) | |||
| @@ -601,10 +601,10 @@ class FusedBatchNorm(Primitive): | |||
| Inputs: | |||
| - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`. | |||
| - **scale** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| - **bias** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| - **mean** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| - **variance** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| - **scale** (Parameter) - Tensor of shape :math:`(C,)`. | |||
| - **bias** (Parameter) - Tensor of shape :math:`(C,)`. | |||
| - **mean** (Parameter) - Tensor of shape :math:`(C,)`. | |||
| - **variance** (Parameter) - Tensor of shape :math:`(C,)`. | |||
| Outputs: | |||
| Tuple of 5 Tensor, the normalized input and the updated parameters. | |||
| @@ -616,13 +616,30 @@ class FusedBatchNorm(Primitive): | |||
| - **updated_moving_variance** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| Examples: | |||
| >>> import mindspore | |||
| >>> import mindspore.nn as nn | |||
| >>> import numpy as np | |||
| >>> from mindspore import Parameter | |||
| >>> from mindspore import Tensor | |||
| >>> from mindspore.ops import operations as P | |||
| >>> class FusedBatchNormNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(FusedBatchNormNet, self).__init__() | |||
| >>> self.fused_batch_norm = P.FusedBatchNorm() | |||
| >>> self.scale = Parameter(Tensor(np.ones([64]), mindspore.float32), name="scale") | |||
| >>> self.bias = Parameter(Tensor(np.ones([64]), mindspore.float32), name="bias") | |||
| >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") | |||
| >>> self.variance = Parameter(Tensor(np.ones([64]), mindspore.float32), name="variance") | |||
| >>> | |||
| >>> def construct(self, input_x): | |||
| >>> out = self.fused_batch_norm(input_x, self.scale, self.bias, self.mean, self.variance) | |||
| >>> return out | |||
| >>> | |||
| >>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32) | |||
| >>> scale = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> bias = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> mean = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> variance = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> op = P.FusedBatchNorm() | |||
| >>> output = op(input_x, scale, bias, mean, variance) | |||
| >>> net = FusedBatchNormNet() | |||
| >>> output = net(input_x) | |||
| >>> output[0].shape | |||
| (128, 64, 32, 64) | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| sig.make_sig('input_x', dtype=sig.sig_dtype.T2), | |||
| @@ -673,12 +690,12 @@ class FusedBatchNormEx(PrimitiveWithInfer): | |||
| Inputs: | |||
| - **input_x** (Tensor) - The input of FusedBatchNormEx, Tensor of shape :math:`(N, C)`, | |||
| data type: float16 or float32. | |||
| - **scale** (Tensor) - Parameter scale, same with gamma above-mentioned, Tensor of shape :math:`(C,)`, | |||
| - **scale** (Parameter) - Parameter scale, same with gamma above-mentioned, Tensor of shape :math:`(C,)`, | |||
| data type: float32. | |||
| - **bias** (Tensor) - Parameter bias, same with beta above-mentioned, Tensor of shape :math:`(C,)`, | |||
| - **bias** (Parameter) - Parameter bias, same with beta above-mentioned, Tensor of shape :math:`(C,)`, | |||
| data type: float32. | |||
| - **mean** (Tensor) - mean value, Tensor of shape :math:`(C,)`, data type: float32. | |||
| - **variance** (Tensor) - variance value, Tensor of shape :math:`(C,)`, data type: float32. | |||
| - **mean** (Parameter) - mean value, Tensor of shape :math:`(C,)`, data type: float32. | |||
| - **variance** (Parameter) - variance value, Tensor of shape :math:`(C,)`, data type: float32. | |||
| Outputs: | |||
| Tuple of 6 Tensors, the normalized input, the updated parameters and reserve. | |||
| @@ -692,13 +709,30 @@ class FusedBatchNormEx(PrimitiveWithInfer): | |||
| - **reserve** (Tensor) - reserve space, Tensor of shape :math:`(C,)`, data type: float32. | |||
| Examples: | |||
| >>> import mindspore | |||
| >>> import mindspore.nn as nn | |||
| >>> import numpy as np | |||
| >>> from mindspore import Parameter | |||
| >>> from mindspore import Tensor | |||
| >>> from mindspore.ops import operations as P | |||
| >>> class FusedBatchNormExNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(FusedBatchNormExNet, self).__init__() | |||
| >>> self.fused_batch_norm_ex = P.FusedBatchNormEx() | |||
| >>> self.scale = Parameter(Tensor(np.ones([64]), mindspore.float32), name="scale") | |||
| >>> self.bias = Parameter(Tensor(np.ones([64]), mindspore.float32), name="bias") | |||
| >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") | |||
| >>> self.variance = Parameter(Tensor(np.ones([64]), mindspore.float32), name="variance") | |||
| >>> | |||
| >>> def construct(self, input_x): | |||
| >>> out = self.fused_batch_norm_ex(input_x, self.scale, self.bias, self.mean, self.variance) | |||
| >>> return out | |||
| >>> | |||
| >>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32) | |||
| >>> scale = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> bias = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> mean = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> variance = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> op = P.FusedBatchNormEx() | |||
| >>> output = op(input_x, scale, bias, mean, variance) | |||
| >>> net = FusedBatchNormExNet() | |||
| >>> output = net(input_x) | |||
| >>> output[0].shape | |||
| (128, 64, 32, 64) | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| sig.make_sig('input_x', dtype=sig.sig_dtype.T2), | |||
| @@ -756,7 +790,7 @@ class BNTrainingReduce(PrimitiveWithInfer): | |||
| Examples: | |||
| >>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32) | |||
| >>> bn_training_reduce = P.BNTrainingReduce(input_x) | |||
| >>> bn_training_reduce = P.BNTrainingReduce() | |||
| >>> output = bn_training_reduce(input_x) | |||
| """ | |||
| @@ -5662,13 +5696,30 @@ class DynamicRNN(PrimitiveWithInfer): | |||
| Has the same type with input `b`. | |||
| Examples: | |||
| >>> import mindspore | |||
| >>> import mindspore.nn as nn | |||
| >>> import numpy as np | |||
| >>> from mindspore import Parameter | |||
| >>> from mindspore import Tensor | |||
| >>> from mindspore.ops import operations as P | |||
| >>> import mindspore.context as context | |||
| >>> context.set_context(mode=context.GRAPH_MODE) | |||
| >>> class DynamicRNNNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(DynamicRNNNet, self).__init__() | |||
| >>> self.dynamic_rnn = P.DynamicRNN() | |||
| >>> | |||
| >>> def construct(self, x, w, b, init_h, init_c): | |||
| >>> out = self.dynamic_rnn(x, w, b, None, init_h, init_c) | |||
| >>> return out | |||
| >>> | |||
| >>> x = Tensor(np.random.rand(2, 16, 64).astype(np.float16)) | |||
| >>> w = Tensor(np.random.rand(96, 128).astype(np.float16)) | |||
| >>> b = Tensor(np.random.rand(128).astype(np.float16)) | |||
| >>> init_h = Tensor(np.random.rand(1, 16, 32).astype(np.float16)) | |||
| >>> init_c = Tensor(np.random.rand(1, 16, 32).astype(np.float16)) | |||
| >>> dynamic_rnn = P.DynamicRNN() | |||
| >>> output = dynamic_rnn(x, w, b, None, init_h, init_c) | |||
| >>> net = DynamicRNNNet() | |||
| >>> output = net(x, w, b, init_h, init_c) | |||
| >>> output[0].shape | |||
| (2, 16, 32) | |||
| """ | |||
| @@ -1446,7 +1446,7 @@ test_case_math_ops = [ | |||
| 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]], | |||
| 'desc_bprop': [[2, 3, 4, 5]]}), | |||
| ('IFMR', { | |||
| 'block': P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0), | |||
| 'block': Q.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0), | |||
| search_step=1.0, with_offset=False), | |||
| 'desc_inputs': [[3, 4, 5], Tensor([0.1], mstype.float32), Tensor([0.9], mstype.float32), | |||
| Tensor(np.random.rand(4).astype(np.int32))], | |||