|
|
@@ -24,170 +24,70 @@ from mindspore.common.tensor import Tensor |
|
|
from mindspore.nn import Cell |
|
|
from mindspore.nn import Cell |
|
|
from mindspore.ops.operations import Tile |
|
|
from mindspore.ops.operations import Tile |
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
|
|
|
|
|
|
|
|
input_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.float32) |
|
|
|
|
|
mul0 = (8, 1, 1) |
|
|
|
|
|
input_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.float32) |
|
|
|
|
|
mul1 = (2, 2, 2) |
|
|
|
|
|
input_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.float32) |
|
|
|
|
|
mul2 = (1, 1, 1) |
|
|
|
|
|
|
|
|
|
|
|
input_32_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.int32) |
|
|
|
|
|
mul_32_0 = (8, 1, 1) |
|
|
|
|
|
input_32_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.int32) |
|
|
|
|
|
mul_32_1 = (2, 2, 2) |
|
|
|
|
|
input_32_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.int32) |
|
|
|
|
|
mul_32_2 = (1, 1, 1) |
|
|
|
|
|
|
|
|
|
|
|
input_16_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.int16) |
|
|
|
|
|
mul_16_0 = (8, 1, 1) |
|
|
|
|
|
input_16_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.int16) |
|
|
|
|
|
mul_16_1 = (2, 2, 2) |
|
|
|
|
|
input_16_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.int16) |
|
|
|
|
|
mul_16_2 = (1, 1, 1) |
|
|
|
|
|
|
|
|
|
|
|
input_8_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.uint8) |
|
|
|
|
|
mul_8_0 = (8, 1, 1) |
|
|
|
|
|
input_8_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.int8) |
|
|
|
|
|
mul_8_1 = (2, 2, 2) |
|
|
|
|
|
input_8_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.uint8) |
|
|
|
|
|
mul_8_2 = (1, 1, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net(Cell): |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super(Net, self).__init__() |
|
|
|
|
|
self.Tile = Tile() |
|
|
|
|
|
|
|
|
|
|
|
self.input_x0 = Parameter(initializer(Tensor(input_x0), input_x0.shape), name='x0') |
|
|
|
|
|
self.mul0 = mul0 |
|
|
|
|
|
self.input_x1 = Parameter(initializer(Tensor(input_x1), input_x1.shape), name='x1') |
|
|
|
|
|
self.mul1 = mul1 |
|
|
|
|
|
self.input_x2 = Parameter(initializer(Tensor(input_x2), input_x2.shape), name='x2') |
|
|
|
|
|
self.mul2 = mul2 |
|
|
|
|
|
|
|
|
|
|
|
@ms_function |
|
|
|
|
|
def construct(self): |
|
|
|
|
|
output = (self.Tile(self.input_x0, self.mul0), |
|
|
|
|
|
self.Tile(self.input_x1, self.mul1), |
|
|
|
|
|
self.Tile(self.input_x2, self.mul2)) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net32(Cell): |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super(Net32, self).__init__() |
|
|
|
|
|
|
|
|
class TileNet(Cell): |
|
|
|
|
|
def __init__(self, numpy_input): |
|
|
|
|
|
super(TileNet, self).__init__() |
|
|
self.Tile = Tile() |
|
|
self.Tile = Tile() |
|
|
|
|
|
|
|
|
self.input_32_x0 = Parameter(initializer(Tensor(input_32_x0), input_32_x0.shape), name='x0') |
|
|
|
|
|
self.mul_32_0 = mul_32_0 |
|
|
|
|
|
self.input_32_x1 = Parameter(initializer(Tensor(input_32_x1), input_32_x1.shape), name='x1') |
|
|
|
|
|
self.mul_32_1 = mul_32_1 |
|
|
|
|
|
self.input_32_x2 = Parameter(initializer(Tensor(input_32_x2), input_32_x2.shape), name='x2') |
|
|
|
|
|
self.mul_32_2 = mul_32_2 |
|
|
|
|
|
|
|
|
self.input_parameter = Parameter(initializer(Tensor(numpy_input), numpy_input.shape), name='x') |
|
|
|
|
|
|
|
|
@ms_function |
|
|
@ms_function |
|
|
def construct(self): |
|
|
|
|
|
output = (self.Tile(self.input_32_x0, self.mul_32_0), |
|
|
|
|
|
self.Tile(self.input_32_x1, self.mul_32_1), |
|
|
|
|
|
self.Tile(self.input_32_x2, self.mul_32_2)) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
def construct(self, mul): |
|
|
|
|
|
return self.Tile(self.input_parameter, mul) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net16(Cell): |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super(Net16, self).__init__() |
|
|
|
|
|
self.Tile = Tile() |
|
|
|
|
|
|
|
|
def ms_tile(nptype): |
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
|
|
|
|
|
self.input_16_x0 = Parameter(initializer(Tensor(input_16_x0), input_16_x0.shape), name='x0') |
|
|
|
|
|
self.mul_16_0 = mul_16_0 |
|
|
|
|
|
self.input_16_x1 = Parameter(initializer(Tensor(input_16_x1), input_16_x1.shape), name='x1') |
|
|
|
|
|
self.mul_16_1 = mul_16_1 |
|
|
|
|
|
self.input_16_x2 = Parameter(initializer(Tensor(input_16_x2), input_16_x2.shape), name='x2') |
|
|
|
|
|
self.mul_16_2 = mul_16_2 |
|
|
|
|
|
|
|
|
input_0 = np.arange(2).reshape((2, 1, 1)).astype(nptype) |
|
|
|
|
|
mul_0 = (8, 1, 1) |
|
|
|
|
|
input_1 = np.arange(32).reshape((2, 4, 4)).astype(nptype) |
|
|
|
|
|
mul_1 = (2, 2, 2) |
|
|
|
|
|
input_2 = np.arange(1).reshape((1, 1, 1)).astype(nptype) |
|
|
|
|
|
mul_2 = (1, 1, 1) |
|
|
|
|
|
|
|
|
@ms_function |
|
|
|
|
|
def construct(self): |
|
|
|
|
|
output = (self.Tile(self.input_16_x0, self.mul_16_0), |
|
|
|
|
|
self.Tile(self.input_16_x1, self.mul_16_1), |
|
|
|
|
|
self.Tile(self.input_16_x2, self.mul_16_2)) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
tile_net = TileNet(input_0) |
|
|
|
|
|
np_expected = np.tile(input_0, mul_0) |
|
|
|
|
|
ms_output = tile_net(mul_0).asnumpy() |
|
|
|
|
|
np.testing.assert_array_equal(ms_output, np_expected) |
|
|
|
|
|
|
|
|
|
|
|
tile_net = TileNet(input_1) |
|
|
|
|
|
np_expected = np.tile(input_1, mul_1) |
|
|
|
|
|
ms_output = tile_net(mul_1).asnumpy() |
|
|
|
|
|
np.testing.assert_array_equal(ms_output, np_expected) |
|
|
|
|
|
|
|
|
|
|
|
tile_net = TileNet(input_2) |
|
|
|
|
|
np_expected = np.tile(input_2, mul_2) |
|
|
|
|
|
ms_output = tile_net(mul_2).asnumpy() |
|
|
|
|
|
np.testing.assert_array_equal(ms_output, np_expected) |
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
@pytest.mark.env_onecard |
|
|
@pytest.mark.env_onecard |
|
|
def test_tile(): |
|
|
|
|
|
net = Net() |
|
|
|
|
|
output = net() |
|
|
|
|
|
|
|
|
|
|
|
expect0 = np.tile(input_x0, mul0) |
|
|
|
|
|
diff0 = output[0].asnumpy() - expect0 |
|
|
|
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff0 < error0) |
|
|
|
|
|
assert output[0].shape == expect0.shape |
|
|
|
|
|
|
|
|
|
|
|
expect1 = np.tile(input_x1, mul1) |
|
|
|
|
|
diff1 = output[1].asnumpy() - expect1 |
|
|
|
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff1 < error1) |
|
|
|
|
|
assert output[1].shape == expect1.shape |
|
|
|
|
|
|
|
|
|
|
|
expect2 = np.tile(input_x2, mul2) |
|
|
|
|
|
diff2 = output[2].asnumpy() - expect2 |
|
|
|
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff2 < error2) |
|
|
|
|
|
assert output[2].shape == expect2.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_tile_float16(): |
|
|
|
|
|
ms_tile(np.float16) |
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
@pytest.mark.env_onecard |
|
|
@pytest.mark.env_onecard |
|
|
def test_tile_32(): |
|
|
|
|
|
net = Net32() |
|
|
|
|
|
output = net() |
|
|
|
|
|
|
|
|
|
|
|
expect0 = np.tile(input_32_x0, mul_32_0) |
|
|
|
|
|
diff0 = output[0].asnumpy() - expect0 |
|
|
|
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff0 < error0) |
|
|
|
|
|
assert output[0].shape == expect0.shape |
|
|
|
|
|
|
|
|
def test_tile_float32(): |
|
|
|
|
|
ms_tile(np.float32) |
|
|
|
|
|
|
|
|
expect1 = np.tile(input_32_x1, mul_32_1) |
|
|
|
|
|
diff1 = output[1].asnumpy() - expect1 |
|
|
|
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff1 < error1) |
|
|
|
|
|
assert output[1].shape == expect1.shape |
|
|
|
|
|
|
|
|
|
|
|
expect2 = np.tile(input_32_x2, mul_32_2) |
|
|
|
|
|
diff2 = output[2].asnumpy() - expect2 |
|
|
|
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff2 < error2) |
|
|
|
|
|
assert output[2].shape == expect2.shape |
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
|
|
@pytest.mark.env_onecard |
|
|
|
|
|
def test_tile_int16(): |
|
|
|
|
|
ms_tile(np.int16) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
|
|
@pytest.mark.env_onecard |
|
|
|
|
|
def test_tile_int32(): |
|
|
|
|
|
ms_tile(np.int32) |
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
@pytest.mark.env_onecard |
|
|
@pytest.mark.env_onecard |
|
|
def test_tile_16(): |
|
|
|
|
|
net = Net16() |
|
|
|
|
|
output = net() |
|
|
|
|
|
|
|
|
|
|
|
expect0 = np.tile(input_16_x0, mul_16_0) |
|
|
|
|
|
diff0 = output[0].asnumpy() - expect0 |
|
|
|
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff0 < error0) |
|
|
|
|
|
assert output[0].shape == expect0.shape |
|
|
|
|
|
|
|
|
|
|
|
expect1 = np.tile(input_16_x1, mul_16_1) |
|
|
|
|
|
diff1 = output[1].asnumpy() - expect1 |
|
|
|
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff1 < error1) |
|
|
|
|
|
assert output[1].shape == expect1.shape |
|
|
|
|
|
|
|
|
|
|
|
expect2 = np.tile(input_16_x2, mul_16_2) |
|
|
|
|
|
diff2 = output[2].asnumpy() - expect2 |
|
|
|
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5 |
|
|
|
|
|
assert np.all(diff2 < error2) |
|
|
|
|
|
assert output[2].shape == expect2.shape |
|
|
|
|
|
|
|
|
def test_tile_int64(): |
|
|
|
|
|
ms_tile(np.int64) |